open el at 2:20 pm or 27.6 .2023
used for uploading on university website for total No. of Printed Like ina hefty
(DO NOT OPEN THIS QUESTION BOOKLET BEFORE TIME OR UNTIL YOU
$\qquad$ (in words)
Name $\qquad$ Date of Birth $\qquad$
Father's Name $\qquad$ Mother's Name $\qquad$
Date of Examination

## CANDIDATES MUST READ THE FOLLOWING INFORMATION/INSTRUCTIONS BEFORE STARTING THE QUESTION PAPER.

1. All questions are compulsory.
2. The candidates must return the question booklet as well as OMR Answer-Sheet to the Invigilator concerned before leaving the Examination Hall, failing which a case of use of unfairmeans / mis-behaviour will be registered against him / her, in addition to lodging of an FIR with the police. Further the answer-sheet of such a candidate will not be evaluated.
3. Keeping in view the transparency of the examination system, carbonless OMR Sheet is provided to the candidate so that a copy of OMR Sheet may be kept by the candidate.
4. Question Booklet along with answer key of all the A, B, C \& D code shall be got uploaded on the University Website immediately after the conduct of Entrance Examination. Candidates may raise valid objection/complaint if any, with regard to discrepancy in the question booklet/answer key within 24 hours of uploading the same on the University Website. The complaint be sent by the students to the Controller of Examinations by hand or through email. Thereafter, no complaint in any case, will be considered.
5. The candidate must not do any rough work or writing in the OMR Answer-Sheet. Rough work, if any, may be done in the question booklet itself. Answers must not be ticked in the question booklet.
6. There will be no negative marking. Each correct answer will be awarded one full mark. Cutting, erasing, overwriting and more than one answer in OMR Answer-Sheet will be treated as incorrect answer.
7. Use only Black or Blue Ball Point Pen of good quality in the OMR Answer-Sheet.
8. Before answering the questions, the candidates should ensure that they have been supplied correct and complete booklet. Complaints, if any, regarding misprinting etc. will not be entertained 30 minutes after starting of the examination.
PG-EE-June, 2023/(Mathematics)(SET-X)/(A)
9. The general solution of ordinary differential equation of ' $n$ ' order contains :
(1) n-arbitrary constants
(2) more than n-arbitrary constants
(3) any number of arbitrary constant
(4) none of these
10. General solution of $\frac{d y}{d x}+2 x y=2 e^{-x^{2}}$ is :
(1) $y=(2 x+c) e^{-x^{2}}$
(2) $y=2 x e^{-x}$
(3) $y=e^{-x}$
(4) none of these
11. The necessary condition for the equation $M(x, y) d x+N(x, y) d y=0$, to be exact is :
(1) $\frac{\partial N}{\partial y}=\frac{\partial M}{\partial x}$
(2) $\frac{\partial N}{\partial y}=-\frac{\partial M}{\partial x}$
(3) $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$
(4) $\frac{\partial M}{\partial y}=-\frac{\partial N}{\partial x}$
12. The equation $y d x+x d y=0$ is :
(1) Partial differential equation
(2) Exact differential equation
(3) Non-exact differential equation
(4) None of these
13. For the differential equation $x \frac{d y}{d x}-y=0$, which of the following function is not an integrating factor?
(1) $\frac{1}{x^{2}}$
(2) $\frac{1}{y^{2}}$
(3) $\frac{1}{x y}$
(4) $\frac{1}{x+y}$
14. If $\vec{a}$ and $\vec{b}$ are two vectors such that $\vec{a} \times \vec{b}=0$ and $\vec{a} \cdot \vec{b}=0$, then :
(1) $\vec{a}$ is parallel to $\vec{b}$
(2) $\vec{a}$ is at right angle to $\vec{b}$
(3) either $\vec{a}$ or $\vec{b}$ is a null vector
(4) none of these
15. The unit normal vector to the surface $x^{4}-3 x y z+z^{2}+1=0$ at the point $(1,1,1)$ is :
(1) $\frac{i+3 j+k}{\sqrt{\pi}}$
(2) $\frac{i-3 j-k}{\sqrt{\pi}}$
(3) $\frac{i+3 j-k}{\sqrt{\pi}}$
(4) None of these
16. A vector $\vec{f}$ is called an irrotational vector if :
(1) div curl $\vec{f}=0$
(2) $\nabla \cdot \vec{f}=0$
(3) $\nabla \times \vec{f}=0$
(4) none of these
17. Which of the following is not true ?
(1) curl $(\operatorname{grad} \phi)=0$
(2) $\operatorname{div}(\operatorname{grad} \phi)=0$
(3) $\operatorname{div}(\operatorname{curl} \vec{f})=0$
(4) $\operatorname{curl}(\vec{r})=0$
18. Which of the following is related with Stoke's theorem?
(1) A line integral and a volume integral
(2) A surface integral and a volume integral
(3) A line integral, a surface integral and a volume integral
(4) A line integral and a surface integral
19. The remainder in the divison of $2^{20}$ by 7 is :
(1) 0
(2) 1
(3) 2
(4) 4
20. Every natural number greater than one has at least :
(1) one prime factor
(2) two prime factor
(3) two composite factors
(4) none of these
21. Find the highest power of 7 contained in 1000 !
(1) 264
(2) 164
(3) 64
(4) none of these
22. If $|\cos (\alpha-i \beta)|=1$, then $\sin ^{2} \alpha$ is equal to :
(1) $\cos h^{2} \beta$
(2) $\sin h^{2} \beta$
(3) $\tan h^{2} \beta$
(4) none of these
23. If $p$ is a prime number then $(p-1)!+1 \equiv 0(\bmod p)$ is the statement of :
(1) Chinese remainder theorem
(2) Fermat's theorem
(3) Wilson's theorem
(4) Reduced residue theorem
24. If $A$ is a non-singular matrix of order $n$, then $\operatorname{adj}(\operatorname{adj} A)$ is equal to :
(1) $|A|^{n+1} A$
(2) $|A|^{n} A$
(3) $|A|^{n-1} A$
(4) $|\Lambda|^{n-2} \Lambda$
25. The vectors $\left[\begin{array}{l}2 \\ 0 \\ k\end{array}\right],\left[\begin{array}{c}3 \\ -1 \\ 5\end{array}\right],\left[\begin{array}{c}5 \\ -1 \\ 1\end{array}\right]$ are linearly dependent, then value of $k$ is equal to :
(1) -4
(2) -2
(3) 0
(4) 4
26. The characteristics roots of a Hermitian matrix are :
(1) Imaginary
(2) Real
(3) Complex number
(4) None of these
27. Determinant of an idempotent matrix equals :
(1) 1
(2) 0
(3) 1 or 0
(4) none of these
28. The common roots of the equations $x^{4}+3 x^{3}-5 x^{2}-6 x-8=0$ and $x^{4}+x^{3}-9 x^{2}+10 x-8=0$ are :
(1) 2,3
(2) 3,4
(3) 4,0
(4) $-4,2$
29. The value of $\lim _{x \rightarrow 0}(1+2 x)^{\frac{x+5}{2}}$ is:
(1) $\frac{e}{2}$
(2) $e^{2}$
(3) $e^{5}$
(4) $e^{10}$
30. Area bounded by the parabola $2 y=x^{2}$ and the line $x=y-4$ is equal to :
(1) 6
(2) 18
(3) $\infty$
(4) none of these
31. The radius of curvature at the origin of the curve $x^{2}+6 y^{2}+2 x-y=0$ is :
(1) $\frac{1}{5 \sqrt{2}}$
(2) $\frac{1}{3 \sqrt{5}}$
(3) $\frac{1}{2 \sqrt{5}}$
(4) $\frac{1}{\sqrt{5}}$
32. The nature of double points on the curve $(y-x)^{2}+x^{7}=0$ :
(1) a cusp
(2) a node
(3) conjugate point
(4) none of these
33. The asymptotes of the curve $r \cos \theta=a \cos 2 \theta$ :
(1) $r \cos \theta+a=0$
(2) $r \sin \theta+a=0$
(3) $r \tan \theta+a=0$
(4) none of these
34. What is the nature of the curve $13 x^{2}-18 x y+37 y^{2}+2 x+14 y-2=0$ ?
(1) circle
(2) sphere
(3) hyperbola
(4) ellipse
35. The equation of the plane which cuts the paraboloid $x^{2}-2 y^{2}=z$ in a conic with its centre at the point $\left(2, \frac{3}{2}, 4\right)$ is given by :
(1) $3 x+4 y+z=0$
(2) $2 x+4 y-z+7=0$
(3) $4 x-6 y-z+5=0$
(4) None of these
36. The latus rectum of the parabola $\left(a^{2}+b^{2}\right)\left(x^{2}+y^{2}\right)=(b x+a y-a b)^{2}$ is :
(1) $\frac{2 a b}{\sqrt{a^{2}+b^{2}}}$
(2) $a b \cdot \sqrt{a^{2}+b^{2}}$
(3) $\sqrt{a^{2}+b^{2}}$
(4) none of these
37. The equation of circle with radius ' $a$ ' and touching the initial line at pole is :
(1) $r=a \tan \theta$
(2) $r=2 a \sin \theta$
(3) $r=2 a \cot \theta$
(4) none of these
38. The points in which the line, $\frac{x+1}{-1}=\frac{y-12}{5}=\frac{z-7}{2}$ cuts the surface $11 x^{2}-5 y^{2}+z^{2}=0$ are :
(1) $(3,2,1),(2,0,1)$
(2) $(1,2,3),(2,-3,1)$
(3) $(2,1,1),(1,0,-1)$
(4) None of these
39. If $\lim _{x \rightarrow 0} \frac{a e^{x}-b \cos x+c e^{-x}}{x \sin x}=2$, then value of $b$ is equal to :
(1) -2
(2) -1
(3) 0
(4) 2
40. If $u=\log \left(x^{3}+y^{3}+z^{3}-3 x y z\right)$, then value of $\frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}+\frac{\partial u}{\partial z}$ is equal to :
(1) $\frac{1}{x^{2}+y^{2}+z^{2}}$
(2) $\frac{1}{x^{3}+y^{3}+z^{3}}$
(3) $\frac{3}{x+y+z}$
(4) None of these
41. The equation of normal to the surface $x y z=4$ at the point $(1,2,2)$ is equal to :
(1) $\frac{X-1}{2}=\frac{Y-2}{1}=\frac{Z-2}{1}$
(2) $\frac{X-1}{1}=\frac{Y-2}{2}=\frac{Z-2}{1}$
(3) $\frac{X-1}{3}=\frac{Y-2}{2}=\frac{Z-2}{2}$
(4) None of these
42. The necessary and sufficient condition for the curve to be a plane curve is:
(1) $\left[\vec{r} \vec{r} \overrightarrow{r^{\prime \prime}}\right]=0$
(2) $\left[\overrightarrow{r^{\prime}} \vec{r}^{\prime \prime} \vec{r}^{\prime \prime}\right]=0$
(3) $\left[\overrightarrow{r^{\prime}} \overrightarrow{r^{\prime \prime}} \vec{r}\right]=0$
(4) none of these
43. The maximum value of the function $\sin x+\sin y+\sin (\sin x+y)$ is :
(1) $\frac{3 \sqrt{3}}{2}$
(2) $\sqrt{3}$
(3) $\frac{\sqrt{3}}{2}$
(4) None of these
44. A partial differential equation by eliminating the arbitrary functions from : $z=f(x-a y)+g(x+a y)$ is given by:
(1) $\frac{\partial^{2} z}{\partial x^{2}}=\frac{\partial^{2} z}{\partial y^{2}}$
(2) $\frac{\partial^{2} z}{\partial y^{2}}=a^{2} \frac{\partial^{2} z}{\partial x^{2}}$
(3) $\frac{\partial^{2} z}{\partial x^{2}}=a^{2} \frac{\partial^{2} z}{\partial y^{2}}$
(4) none of these
45. The particular integral of the differential equation $\frac{\partial^{3} z}{\partial x^{3}}-3 \frac{\partial^{3} z}{\partial x^{2} \partial y}+4 \frac{\partial^{3} z}{\partial y^{3}}=e^{x \cdot 2 y}$ is:
(1) $\frac{1}{8} e^{x+2 y}$
(2) $\frac{1}{2} e^{2 y}$
(3) $\frac{1}{27} e^{x+2 y}$
(4) none of these
46. The partial differential equation $\frac{\partial^{2} z}{\partial x^{2}}-7 \frac{\partial^{2} z}{\partial x \partial y}+6 \frac{\partial^{2} z}{\partial y^{2}}=0$ is :
(1) Hyperbolic
(2) Parabolic
(3) Elliptic
(4) None of these
47. The real characteristics of the partial differential equation $\frac{\partial^{2} z}{\partial x^{2}}+4 \frac{\partial^{2} z}{\partial x \partial y}+4 \frac{\partial^{2} z}{\partial y^{2}}=0$ is:
(1) $4 x=y+c$
(2) $3 x+y=0$
(3) $8 x-y=0$
(4) $y-2 x=c$
48. To two dimensional heat equation is given by:
(1) $\frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}=\frac{1}{c} \frac{\partial u}{\partial t}$
(2) $\frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}=8$
(3) $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial u}{\partial y}=\frac{1}{c^{2}} \frac{\partial^{2} u}{\partial x^{2}}$
(4) $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=\frac{1}{c^{2}} \frac{\partial u}{\partial t}$
49. The resolved part of a force $f$ in a direction perpendicular to it is :
(1) Maximum
(2) Minimum
(3) F
(4) 0
50. Centre of gravity of a thin uniform triangular lamina divides every median in the ratio:
(1) $1: 2$
(2) $2: 1$
(3) $2: 3$
(4) $1: 4$
51. The force of friction called into play when there is equilibrium is called :
(1) Limiting friction
(2) Dynamical friction
(3) Statical friction
(4) None of these
52. Which type of forces from the couple?
(1) Two equal and unlike parallel forces with same lines of action.
(2) Two equal and unlike parallel forces with different lines of action.
(3) Two unequal and like parallel forces with different lines of action.
(4) Two unequal and unlike parallel forces with different lines of action.
53. The gravitational unit of moment in S.I. system is :
(1) Dyne-centimeter
(2) Newton meter
(3) $\mathrm{gm} . \mathrm{cm}$
(4) kg. m
54. Every non-empty subset of R which is bounded above must have l.u.b. This result is known as :
(1) Law of well ordering
(2) Law of trichotomy
(3) Completeness axiom
(4) Archimedian property of real numbers
55. The g.l.b. of a set :
(1) belongs to the set
(2) does not belong to the set
(3) may or may not belong to the set
(4) none of these
56. If $\sum_{n=1}^{\infty} a_{n}$ is convergent and the sequence $<b_{n}>$ is monotonic and bounded, then $\sum_{n=1}^{\infty} a_{n} b_{n}$ is convergent. This statement is known as :
(1) Abel's test
(2) Abel's lemma
(3) Dirichlet's test
(4) None of these
57. The series $\sum_{n=1}^{\infty} a_{n}$, where $a_{n}=\sqrt{n^{4}+1}-\sqrt{n^{4}-1}$ is :
(1) convergent
(2) divergent
(3) oscillating
(4) none of these
58. The infinite product $\left(1-\frac{1}{2^{2}}\right)\left(1-\frac{1}{3^{2}}\right)\left(1-\frac{1}{4^{2}}\right) \ldots \ldots \ldots$ is :
(1) divergent
(2) convergent
(3) oscillating
(4) none of these
59. Generating function for Bessel function $J_{n}(x)$ is :
(1) $e^{\frac{x}{2}\left(t-\frac{1}{t}\right)}$
(2) $e^{\frac{x}{2}\left(\frac{1}{t}-t\right)}$
(3) $e^{x\left(t-\frac{1}{t}\right)}$
(4) None of these
60. Rodrigue formula for Legendre polynomials is :
(1) $P_{n}(x)=\frac{1}{2^{n} n!} \frac{d^{n}}{d x^{n}}\left(x^{2}-1\right)^{n}$
(2) $P_{n}(x)=\frac{1}{2^{n}} \frac{d^{n}}{d x^{n}}\left(x^{2}-1\right)^{n}$
(3) $P_{n}(x)=\frac{1}{2^{n} n!} \frac{d^{n}}{d x^{n}}\left(x^{2}+1\right)^{n}$
(4) None of these
61. The Laplace transform of $t e^{-t} \sin 3 t$ is equal to :
(1) $\frac{36}{\left(s^{2}+2 s+10\right)^{2}}$
(2) $\frac{6(s+1)}{\left(s^{2}+2 s+10\right)^{2}}$
(3) $\frac{s+1}{\left(s^{2}+2 s+6\right)^{2}}$
(4) None of these
62. The generating function of Legendre's polynomials is :
(1) $\left(1+2 x t+t^{2}\right)^{3 / 2}$
(2) $\left(1+2 x+t^{2}\right)^{1 / 2}$
(3) $\left(1-2 x t+t^{2}\right)^{-1 / 2}$
(4) None of these
63. The sine Fourier transform of $2 e^{-5 x}$ is:
(1) $\frac{5 s}{s^{2}+4}$
(2) $\frac{-5 s}{s^{2}+4}$
(3) $\frac{5 s}{s^{2}+25}$
(4) None of these
64. Which of the following keyword is used for the storage class ?
(1) print f
(2) external
(3) auto
(4) none of these
65. What will be the maximum size of a double variable?
(1) 16 bytes
(2) 8 bytes
(3) 4 bytes
(4) none of these
66. The continue command cannot be used with :
(1) switch
(2) for
(3) do
(4) none of these
67. The bitwise OR operator is used to :
(1) divide number
(2) set the desired bits to 0
(3) set the desired bits to 1
(4) none of these
68. C is which kind of language ?
(1) machine
(2) assembly
(3) objected-oriented
(4) none of these
69. If $f$ is bounded function defined on $[a, b]$ and $P$ be a partition of $f[a, b]$, then which of the following is odd?
(1) $L(f, P) \leq U(f, P)$
(2) $L(-f, P)=-U(f, P)$
(3) $U(P,-f)=-L(P, f)$
(4) $U(-f, P)=-U(f, P)$
70. Which of the following is not a bounded metric ?
(1) $d(x, y)=|x-y|$
(2) $d(x, y)=\min \{2,|x-y|\}$
(3) discrete metric
(4) $d^{*}(x, y)=\frac{d(x, y)}{1+d(x, y)}$
where $d$ is any metric on $X$.
71. Which one is a dense set ?
(1) the subset $A=\left\{\frac{1}{n}, n \in N\right\}$ in $R$
(2) set of natural number in $R$
(3) $Q$ in $R$
(4) none of these
72. If $f(x)=\frac{1}{x^{2}}$ on $[1,4]$ and $P=[1,2,3,4]$ be the partition of $[1,4]$, then $L(f, P)$ is equal to :
(1) $\frac{70}{144}$
(2) $\frac{61}{144}$
(3) $\frac{30}{144}$
(4) none of these
73. The integral $\int_{-\infty}^{\infty} \frac{d x}{1+x^{2}}$ is :
(1) convergent
(2) divergent
(3) conditionally convergent
(4) none of these
74. A sphere (open or closed) is always :
(1) empty
(2) non-empty
(3) singleton set
(4) none of these
75. What is odd against the given statement "A set is closed iff" ?
(1) $A=\bar{A}$
(2) $d(A) \subset A$
(3) $A^{C}$ is open
(4) $A=\AA$
76. The order of $a$ and $x$ in a group are respectively 3 and 4 . Then the order of $x^{1} a x$ is :
(1) 12
(2) 8
(3) 5
(4) 3
77. Every group is isomorphic to a permutation group. This result is known as :
(1) Lagrange theorem
(2) Cauchy theorem
(3) Cayley's theorem
(4) Gauss theorem
78. The number of conjugacy classes in a group of order 25 is :
(1) 1
(2) 5
(3) 25
(4) none of these
79. The number of non-isomorphic abelian groups of order 8 is :
(1) 1
(2) 2
(3) 3
(4) none of these
80. The number of prime ideals of $Z_{10}$ is:
(1) 2
(2) 1
(3) 0
(4) none of these
81. The ring of $Z, Q, R, C, Z_{5}$ are :
(1) All integral domains
(2) None of them is integral domain
(3) Some of them is integral domain
(4) None of these
82. Which statement is wrong?
$F$ is a field, then $F[x]$ is :
(1) Euclidean domain
(2) Principal ideal domain
(3) Unique factorization domain
(4) None of these
83. In S. H. M. the maximum velocity is :
(1) $V_{\max }=a$
(2) $V_{\max }=\sqrt{\mu} a$
(3) $V_{\max }=\mu a$
(4) None of these
84. The uniform force that will move on kg . mass from rest through one metre in one second is :
(1) 4 Newton
(2) 3 Newton
(3) 2 Newton
(4) None of these
85. At an apse, the radius vector is :
(1) perpendicular to the tangent
(2) parallel to the tangent
(3) perpendicular to the apsidal distance
(4) None of these
86. The radial and transverse acceleration of a particle moving along a plane curve
$r=f(\theta)$ are:
(1) $r \frac{d r}{d t}, \frac{d \theta}{d t}$
(2) $\frac{d r}{d t}, r \frac{d \theta}{d t}$
(3) $\frac{d^{2} r}{d t^{2}}-r\left(\frac{d \theta}{d t}\right)^{2}, \frac{1}{r} \frac{d}{d t}\left[r^{2} \frac{d \theta}{d t}\right]$
(4) None of these
87. Central force is defined as :
(1) A force whose line of action always passes through variable point.
(2) A force whose line of action always passes through a fixed point.
(3) A force whose line of action does not pass through a fixed point.
(4) None of these
88. Frequency of a simple harmonic motion is :
(1) $\frac{\mu}{\pi}$
(2) $\frac{\pi}{\mu}$
(3) $\frac{\sqrt{\mu}}{\pi}$
(4) $\frac{\sqrt{\mu}}{2 \pi}$
89. Co-efficient of the vector $(5,-1,2)$ w. r. t. basis $(1,4,2),(4,2,1),(2,1,3)$ are :
(1) $(1,1,1)$
(2) $(-1,1,1)$
(3) $(1,2,3)$
(4) None of these

PG-EE-June, 2023/(Mathematics)(SET-X)/(A)
P. T. O.
82. Which is an orthogonal set ?
(1) $\{(1,0,1),(1,0,-1),(0,1,0)\}$
(2) $|(1,0,1),(1,0,-1),(0,3,4)|$
(3) $\{(1,0,1),(1,0,-1),(-1,0,1)\}$
(4) None of these
83. Let $T: R^{2} \rightarrow R^{3}$ be linear transformation defined by $T\left(x_{1}, x_{2}\right)=\left(x_{1}-x_{2}, x_{2}-x_{1},-x_{1}\right)$. The nullty $T$ is :
(1) 2
(2) 1
(3) 0
(4) None of these
84. Let $F: R^{3} \rightarrow R^{2}$ be defined by $F(x, y, z)=(1 x, y+z)$, then:
(1) $F$ is linear transformation
(2) $F$ is not a linear transformation
(3) $F$ is invertible
(4) None of these
85. Let $V(F)$ be the vector space of all polynomial in $x$ in which an inner product is defined by $(f, g)=\int_{0}^{1} f(x) g(x) d x$. Then for $f(x)=x+2, g(x)=x^{2}-2 x-3,\langle f, g>$ is equal to :
(1) $\frac{5}{2}$
(2) $\frac{5}{8}$
(3) $\frac{37}{4}$
(4) $-\frac{37}{4}$
86. The linear transformation $T: R^{2} \rightarrow R^{2}$ defined by $T(1,0)=(2,3), T(0,1)=(5,6)$ is :
(1) one one and onto
(2) one one but not onto
(3) onto but not one one
(4) none of these

PG-EE-June, 2023/(Mathematics)(SET-X)/(A)
87. Let $T: R^{3} \rightarrow R^{3}$ be defined by $T(x, y, z)=(x, y, 0)$ and $S: R^{2} \rightarrow R^{2}$ be defined by $S(x, y)=(2 x, 3 y)$, are linear transformation on the real vector spaces $R^{3}$ and $R^{2}$ respectively. Then which of the following is correct ?
(1) $T$ and $S$ are both singular
(2) $T$ and $S$ are both non-singular
(3) $T$ is singular but $S$ is non-singular
(4) None of these
88. The integral $\int_{0}^{1} x^{m-1}(1-x)^{n-1} d x$ is known as :
(1) Theta function
(2) Zeta function
(3) Gamma function
(4) Beta function
89. Fourier expansion of $f(x)=|x|$ in $[-\pi, \pi]$ is :
(1) $-\frac{4}{\pi}\left(\frac{\cos x}{1^{2}}+\frac{\cos 3 x}{3^{2}}+\frac{\cos 5 x}{5^{2}}+\ldots \ldots \ldots\right)$
(2) $\frac{\pi}{2}-\frac{4}{\pi}\left(\frac{\cos x}{1}+\frac{\cos 3 x}{3}+\frac{\cos 5 x}{5}+\ldots \ldots \ldots.\right)$
(3) $\frac{\pi}{2}-\frac{4}{\pi}\left(\frac{\cos x}{1^{2}}+\frac{\cos 3 x}{3^{2}}+\frac{\cos 5 x}{5^{2}}+\ldots \ldots \ldots\right)$
(4) None of these
90. If the function $f(z)$ is continuous at $z_{0}$, then :
(1) $f(z)$ is differentiable at $z_{0}$
(2) $f(z)$ is not necessarily differentiable at $z_{0}$
(3) $f(z)$ is analytic at $z_{0}$
(4) None of these
91. Polar form of C. R. equations are :
(1) $\frac{\partial u}{\partial r}=\frac{1}{r} \frac{\partial v}{\partial \theta}, \frac{\partial v}{\partial r}=-\frac{1}{r} \frac{\partial u}{\partial 0}$
(2) $\frac{\partial u}{\partial \theta}=\frac{1}{r} \frac{\partial v}{\partial r}, \frac{\partial u}{\partial r}=r \frac{\partial v}{\partial \theta}$
(3) $\frac{\partial u}{\partial \theta}=r \frac{\partial v}{\partial r}, \frac{\partial u}{\partial r}=\frac{1}{r} \frac{\partial v}{\partial \theta}$
(4) None of these
92. The fixed points of the mapping $W=\frac{5 z+4}{z+5}$ are :
(1) 2,2
(2) $2,-2$
(3) $-2,-2$
(4) None of these
93. The inverse point of the point $z$ with respect to the circle $|z|=r$ is:
(1) $\frac{r}{\bar{z}}$
(2) $\frac{r^{2}}{z}$
(3) $\frac{r^{2}}{\bar{z}}$
(4) None of these
94. Fourier series for the function $f(x)$ in the interval $(c, c+2 \pi)$ is :
(1) $f(x)=\sum_{n=1}^{\infty} a_{n} \cos n x+\sum_{n=1}^{\infty} b_{n} \sin n x$
(2) $f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \sin n x+\sum_{n=1}^{\infty} b_{n} \cos n x$
(3) $f(x)=\sum_{n=1}^{\infty} a_{n} \sin n x+\sum_{n=1}^{\infty} b_{n} \cos n x$
(4) $f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos n x+\sum_{n=1}^{\infty} b_{n} \sin x$
95. The value of $\Delta^{n}\left(a^{x}\right)$ is :
(1) $\left(a^{n h}+1\right) a^{x}$
(2) $\left(a^{n h}-1\right) a^{x}$
(3) $\left(a^{h}+1\right)_{a^{x}}^{n}$
(4) $\left(a^{h}-1\right)_{a^{n}}^{x}$
96. The order of convergence of Newton-Raphson method is :
(1) 1
(2) 1.618
(3) 2
(4) None of these
97. Runge-Kutta method is used for :
(1) Interpolation
(2) Numerical differentiation
(3) Numerical Integration
(4) Numerical solution of ordinary differential equation
98. The values of a function $f(x)$ are tabulated below :

| $x$ | 0 | 1 | 2 | 3 |
| :---: | :---: | :---: | :---: | :---: |
| $f(x)$ | 1 | 2 | 1 | 10 |

(1) $2 x^{3}-7 x^{2}+6 x+1$
(2) $x^{3}-7 x^{2}-6 x+1$
(3) $2 x^{3}+7 x^{2}-6 x+2$
(4) None of these
99. In decomposition method, if $u_{i i}=1$, then the method is called:
(1) Doolittle method
(2) Crout's method
(3) Euler's method
(4) None of these
100. The quadrature formulae $\int_{-1}^{1} f(x) d x=\frac{1}{3}[f(-1)+4 f(0)+f(1)]$ with step length $h=1.0$ is exact for polynomial of degree less than or equal to :
(1) Two
(2) Three
(3) Four
(4) None of these
opened at 2:20pm on 27-6.2023 used for uploading on university website Total No. of Printed Pages: 21
(DO NOT OPEN THIS QUESTION BOOKLET BEFORE TIME OR UNTIL YOU
$\qquad$
Time : $11 / 4$ Hours
Roll No. (in figures) $\qquad$ Max. Marks : 100 (in words) $\qquad$
Name $\qquad$ Date of Birth $\qquad$
Father's Name $\qquad$ Mother's Name $\qquad$
Date of Examination $\qquad$

## CANDIDATES MUST READ THE FOLLOWING INFORMATION/INSTRUCTIONS BEFORE STARTING THE QUESTION PAPER.

## 1. All questions are compulsory.

2. The candidates must return the question booklet as well as OMR Answer-Sheet to the Invigilator concerned before leaving the Examination Hall, failing which a case of use of unfairmeans / mis-behaviour will be registered against him / her, in addition to lodging of an FIR with the police. Further the answer-sheet of such a candidate will not be evaluated.
3. Keeping in view the transparency of the examination system, carbonless OMR Sheet is provided to the candidate so that a copy of OMR Sheet may be kept by the candidate.
4. Question Booklet along with answer key of all the A, B, C \& D code shall be got uploaded on the University Website immediately after the conduct of Entrance Examination. Candidates may raise valid objection/complaint if any, with regard to discrepancy in the question booklet/answer key within 24 hours of uploading the same on the University Website. The complaint be sent by the students to the Controller of Examinations by hand or through email. Thereafter, no complaint in any case, will be considered.
5. The candidate must not do any rough work or writing in the OMR Answer-Sheet. Rough work, if any, may be done in the question booklet itself. Answers must not be ticked in the question booklet.
6. There will be no negative marking. Each correct answer will be awarded one full mark. Cutting, erasing, overwriting and more than one answer in OMR Answer-Sheet will be treated as incorrect answer.
7. Use only Black or Blue Ball Point Pen of good quality in the OMR Answer-Sheet.
8. Before answering the questions, the candidates should ensure that they have been supplied correct and complete booklet. Complaints, if any, regarding misprinting etc. will not be entertained 30 minutes after starting of the examination.
PG-EE-June, 2023/(Mathematics)(SET-X)/(B)
9. The number of non-isomorphic'abelian groups of order 8 is :
(1) 1
(2) 2
(3) 3
(4) none of these
10. The number of prime ideals of $Z_{10}$ is :
(1) 2
(2) 1
(3) 0
(4) none of these
11. The ring of $Z, Q, R, C, Z$ are :
(1) All integral domains
(2) None of them is integral domain
(3) Some of them is integral domain
(4) None of these
12. Which statement is wrong ?
$F$ is a field, then $F[x]$ is :
(1) Euclidean domain
(2) Principal ideal domain
(3) Unique factorization domain
(4) None of these
13. In S. H. M. the maximum velocity is :
(1) $V_{\max }=a$
(2) $V_{\max }=\sqrt{\mu} a$
(3) $V_{\max }=\mu a$
(4) None of these
P. T. O.
14. The uniform force that will move on kg . mass from rest through one metre in one second is :
(1) 4 Newton
(2) 3 Newton
(3) 2 Newton
(4) None of these
15. At an apse, the radius vector is :
(1) perpendicular to the tangent
(2) parallel to the tangent
(3) perpendicular to the apsidal distance
(4) None of these
16. The radial and transverse acceleration of a particle moving along a plane curve
$r=f(\theta)$ are :
(1) $r \frac{d r}{d t}, \frac{d \theta}{d t}$
(2) $\frac{d r}{d t}, r \frac{d \theta}{d t}$
(3) $\frac{d^{2} r}{d t^{2}}-r\left(\frac{d \theta}{d t}\right)^{2}, \frac{1}{r} \frac{d}{d t}\left[r^{2} \frac{d \theta}{d t}\right]$.
(4) None of these
17. Central force is defined as :
(1) A force whose line of action always passes through variable point.
(2) A force whose line of action always passes through a fixed point.
(3) A force whose line of action does not pass through a fixed point.
(4) None of these

## PG-EE-June, 2023/(Mathematics)(SET-X)/(B)

10. Frequency of a simple harmonic motion is :
(1) $\frac{\mu}{\pi}$
(2) $\frac{\pi}{\mu}$
(3) $\frac{\sqrt{\mu}}{\pi}$
(4) $\frac{\sqrt{\mu}}{2 \pi}$
11. Generating function for Bessel function $J_{n}(x)$ is :
(1) $e^{\frac{x}{2}\left(t-\frac{1}{t}\right)}$
(2) $e^{\frac{x}{2}\left(\frac{1}{t}-t\right)}$
(3) $e^{x\left(t-\frac{1}{t}\right)}$
(4) None of these
12. Rodrigue formula for Legendre polynomials is :
(1) $P_{n}(\dot{x})=\frac{1}{2^{n} n!} \frac{d^{n}}{d x^{n}}\left(x^{2}-1\right)^{n}$
(2) $P_{n}(x)=\frac{1}{2^{n}} \frac{d^{n}}{d x^{n}}\left(x^{2}-1\right)^{n}$
(3) $P_{n}(x)=\frac{1}{2^{n} n!} \frac{d^{n}}{d x^{n}}\left(x^{2}+1\right)^{n}$
(4) None of these
13. The Laplace transform of $t e^{-t} \sin 3 t$ is equal to :
(1) $\frac{36}{\left(s^{2}+2 s+10\right)^{2}}$
(2) $\frac{6(s+1)}{\left(s^{2}+2 s+10\right)^{2}}$
(3) $\frac{s+1}{\left(s^{2}+2 s+6\right)^{2}}$
(4) None of these
14. The generating function of Legendre's polynomials is :
(1) $\left(1+2 x+t^{2}\right)^{3 / 2}$
(2) $\left(1+2 x^{2}+1^{2}\right)^{1 / 2}$
(3) $\left(1=2 x+1^{2}\right)^{-1 / 2}$
(4) None of these
15. The sine Fourier transform of $2 e^{-5 x}$ is:
(1) $\frac{5 s}{s^{3}+4}$
(2) $\frac{-5 s}{s^{\frac{3}{2}+4}}$
(3) $\frac{5 s}{s^{2}+25}$
(4) None of these
16. Which of the following keyword is used for the storage class?
(1) print f
(z) external
(3) auto
(4) none of these
17. What will be the maximum size of a double variable ?
(1) 16 bytes
(z) 8 bytes
(3) 4 bytes
(4) none of these
18. The continue command cannot be used with:
(1) switch
(2) for
(3) do
(d) none of these
19. The bitwise OR operator is used to:
(1) divide number
(2) set the desired bits to 0
(3) set the desired bits to 1
(4) none of these
20. C is which kind of language ?
(1) machine
(2) assembly
(3) objected-oriented
(4) none of these
21. If $\lim _{x \rightarrow 0} \frac{a e^{x}-b \cos x+c e^{-x}}{x \sin x}=2$, then value of $b$ is equal to :
(1) -2
(2) -1
(3) 0
(4) 2
22. If $u=\log \left(x^{3}+y^{3}+z^{3}-3 x y z\right)$, then value of $\frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}+\frac{\partial u}{\partial z}$ is equal to :
(1) $\frac{1}{x^{2}+y^{2}+z^{2}}$
(2) $\frac{1}{x^{3}+y^{3}+z^{3}}$
(3) $\frac{3}{x+y+z}$
(4) None of these
23. The equation of normal to the surface $x y z=4$ at the point $(1,2,2)$ is equal to:
(1) $\frac{X-1}{2}=\frac{Y-2}{1}=\frac{Z-2}{1}$
(2) $\frac{X-1}{1}=\frac{Y-2}{2}=\frac{Z-2}{1}$
(3) $\frac{X-1}{3}=\frac{Y-2}{2}=\frac{Z-2}{2}$
(4) None of these
24. The necessary and sufficient condition for the curve to be a plane curve is :
(1) $\left[\vec{r} \overrightarrow{r^{\prime}} \vec{r}^{\prime}\right]=0$
(2) $\left[\vec{r}^{\prime} \vec{r}^{\prime} \vec{r}^{\prime \prime \prime}\right]=0$
(3) $\left[\overrightarrow{r^{\prime}} \cdot \overrightarrow{r^{\prime}} \vec{r}\right]=0$
(4) none of these
25. The maximum value of the function $\sin x+\sin y+\sin (\sin x+y)$ is :
(1) $\frac{3 \sqrt{3}}{2}$
(2) $\sqrt{3}$
(3) $\frac{\sqrt{3}}{2}$
(4) None of these
26. A partial differential equation by eliminating the arbitrary functions from : $z=f(x-a y)+g(x+a y)$ is given by :
(1) $\frac{\partial^{2} z}{\partial x^{2}}=\frac{\partial^{2} z}{\partial y^{2}}$
(2) $\frac{\partial^{2} z}{\partial y^{2}}=a^{2} \frac{\partial^{2} z}{\partial x^{2}}$
(3) $\frac{\partial^{2} z}{\partial x^{2}}=a^{2} \frac{\partial^{2} z}{\partial y^{2}}$
(4) none of these
27. The particular integral of the differential equation $\frac{\partial^{3} z}{\partial x^{3}}-3 \frac{\partial^{3} z}{\partial x^{2} \partial y}+4 \frac{\partial^{3} z}{\partial y^{3}}=e^{x \cdot 2 y}$ is :
(1) $\frac{1}{8} e^{x+2 y}$
(2) $\frac{1}{2} e^{2 y}$
(3) $\frac{1}{27} e^{x+2 y}$
(4) none of these
28. The partial differential equation $\frac{\partial^{2} z}{\partial x^{2}}-7 \frac{\partial^{2} z}{\partial x \partial y}+6 \frac{\partial^{2} z}{\partial y^{2}}=0$ is:
(1) Hyperbolic
(2) Parabolic
(3) Elliptic
(4) None of these
29. The real characteristics of the partial differential equation $\frac{\partial^{2} z}{\partial x^{2}}+4 \frac{\partial^{2} z}{\partial x \partial y}+4 \frac{\partial^{2} z}{\partial y^{2}}=0$ is :
(1) $4 x=y+c$
(2) $3 x+y=0$
(3) $8 x-y=0$
(4) $y-2 x=c$
30. To two dimensional heat equation is given by :
(1) $\frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}=\frac{1}{c} \frac{\partial u}{\partial t}$
(2) $\frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}=8$
(3) $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial u}{\partial y}=\frac{1}{c^{2}} \frac{\partial^{2} u}{\partial x^{2}}$
(4) $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=\frac{1}{c^{2}} \frac{\partial u}{\partial t}$
31. The remainder in the divison of $2^{20}$ by 7 is :
(1) 0
(2) 1
(3) 2
(4) 4
32. Every natural number greater than one has at least:
(1) one prime factor
(2) two prime factor
(3) two composite factors
(4) none of these
33. Find the highest power of 7 contained in 1000!
(1) 264
(2) 164
(3) 64
(4) none of these
34. If $|\cos (\alpha-i \beta)|=1$, then $\sin ^{2} \alpha$ is equal to:
(1) $\cosh ^{2} \dot{\beta}$
(2) $\sin h^{2} \beta$
(3) $\tan h^{2} \beta$
(4) none of these
35. If $p$ is a prime number then $(p-1)!+1 \equiv 0(\bmod p)$ is the statement of :
(1) Chinese remainder theorem
(2) Fermat's theorem
(3) Wilson's theorem
(4) Reduced residue theorem
36. If $A$ is a non-singular matrix of order $n$, then $\operatorname{adj}(\operatorname{adj} A)$ is equal to :
(1) $|A|^{n+1} A$
(2) $|A|^{n} A$
(3) $|A|^{n-1} A$
(4) $|A|^{n-2} A$
37. The vectors $\left[\begin{array}{l}2 \\ 0 \\ k\end{array}\right],\left[\begin{array}{c}3 \\ -1 \\ 5\end{array}\right],\left[\begin{array}{c}5 \\ -1 \\ 1\end{array}\right]$ are linearly dependent, then value of $k$ is equal to :
(1) -4
(2) -2
(3) 0
(4) 4
38. The characteristics roots of a Hermitian matrix are :
(1) Imaginary
(2) Real
(3) Complex number
(4) None of these
39. Determinant of an idempotent matrix equals :
(1) 1
(2) 0
(3) 1 or 0
(4) none of these
40. The common roots of the equations $x^{4}+3 x^{3}-5 x^{2}-6 x-8=0$ and $x^{4}+x^{3}-9 x^{2}+10 x-8=0$ are :
(1) 2,3
(2) 3,4
(3) 4,0
(4) $-4,2$
41. Polar form of $C$. R. equations are :
(1) $\frac{\partial u}{\partial r}=\frac{1}{r} \frac{\partial v}{\partial \theta}, \frac{\partial v}{\partial r}=-\frac{1}{r} \frac{\partial u}{\partial \theta}$
(2) $\frac{\partial u}{\partial \theta}=\frac{1}{r} \frac{\partial v}{\partial r}, \frac{\partial u}{\partial r}=r \frac{\partial v}{\partial 0}$
(3) $\frac{\partial u}{\partial \theta}=r \frac{\partial v}{\partial r}, \frac{\partial u}{\partial r}=\frac{1}{r} \frac{\partial v}{\partial 0}$
(4) None of these
42. The fixed points of the mapping $W=\frac{5 z+4}{z+5}$ are :
(1) 2,2
(2) $2,-2$
(3) $-2,-2$
(4) None of these
43. The inverse point of the point $z$ with respect to the circle $|z|=r$ is :
(1) $\frac{r}{\bar{z}}$
(2) $\frac{r^{2}}{z}$
(3) $\frac{r^{2}}{\bar{z}}$
(4) None of these

PG-EE-June, 2023/(Mathematics)(SET-X)/(B)
44. Fourier series for the function $f(x)$ in the interval $(c, c+2 \pi)$ is :
(1) $f(x)=\sum_{n=1}^{\infty} a_{n} \cos n x+\sum_{n=1}^{\infty} b_{n} \sin n x$
(2) $f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \sin n x+\sum_{n=1}^{\infty} b_{n} \cos n x$
(3) $f(x)=\sum_{n=1}^{\infty} a_{n} \sin n x+\sum_{n=1}^{\infty} b_{n} \cos n x$
(4) $f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos n x+\sum_{n=1}^{\infty} b_{n} \sin x$
45. The value of $\Delta^{n}\left(a^{x}\right)$ is:
(1) $\left(a^{n h}+1\right) a^{x}$
(2) $\left(a^{n h}-1\right) a^{x}$
(3) $\left(a^{h}+1\right)_{a^{x}}^{n}$
(4) $\left(a^{h}-1\right)_{a^{x}}^{n}$
46. The order of convergence of Newton-Raphson method is :
(1) 1

- (2). 1.618
(3) 2
(4) None of these

47. Runge-Kutta method is used for :
(1) Interpolation
(2) Numerical differentiation
(3) Numerical Integration
(4) Numerical solution of ordinary differential equation

PG-EE-June, 2023/(Mathematics)(SET-X)/(B)
48. The values of a function $f(x)$ are tabulated below :

| $x$ | 0 | 1 | 2 | 3 |
| :---: | :---: | :---: | :---: | :---: |
| $f(x)$ | 1 | 2 | 1 | 10 |

(1) $2 x^{3}-7 x^{2}+6 x+1$
(2) $x^{3}-7 x^{2}-6 x+1$
(3) $2 x^{3}+7 x^{2}-6 x+2$
(4) None of these
49. In decomposition method, if $u_{i i}=1$, then the method is called :
(1) Doolittle method
(2) Crout's method
(3) Euler's method
(4) None of these
50. The quadrature formulae $\int_{-1}^{1} f(x) d x=\frac{1}{3}[f(-1)+4 f(0)+f(1)]$ with step length $h=1.0$ is exact for polynomial of degree less than or equal to :
(1) Two
(2) Three
(3) Four
(4) None of these
51. If $f$ is bounded function defined on $[a, b]$ and $P$ be a partition of $f[a, b]$, then which of the following is odd?
(1) $L(f, P) \leq U(f, P)$
(2) $L(-f, P)=-U(f, P)$
(3) $U(P,-f)=-L(P, f)$
(4) $U(-f, P)=-U(f, P)$
52. Which of the following is not a bounded metric?
(1) $d(x, y)=|x-y|$
(2) $d(x, y)=\min \{2,|x-y|\}$
(3) discrete metric
(4) $d^{*}(x, y)=\frac{d(x, y)}{1+d(x, y)}$.
where $d$ is any metric on $X$.
53. Which one is a dense set ?
(1) the subset $A=\left\{\frac{1}{n}, n \in N\right\}$ in $R$
(2) set of natural number in $R$
(3) $Q$ in $R$
(4) none of these
54. If $f(x)=\frac{1}{x^{2}}$ on $[1,4]$ and $P=[1,2,3,4]$ be the partition of $[1,4]$, then $L(f, P)$ is equal to :
(1) $\frac{70}{144}$
(2) $\frac{61}{144}$
(3) $\frac{30}{144}$
(4) none of these
55. The integral $\int_{-\infty}^{\infty} \frac{d x}{1+x^{2}}$ is :
(1) convergent
(2) divergent
(3) conditionally convergent
(4) none of these
56. A sphere (open or closed) is always :
(1) empty
(2) non-empty
(3) singleton set
(4) none of these
57. What is odd against the given statement "A set is closed iff" ?
(1) $A=\bar{A}$
(2) $d(A) \subset A$
(3) $A^{C}$ is open
(4) $A=\AA$
58. The order of $a$ and $x$ in a group are respectively 3 and 4. Then the order of $x^{-1} a x$ is:
(1) 12
(2) 8
(3) 5
(4) 3
59. Every group is isomorphic to a permutation group. This result is known as :
(1) Lagrange theorem
(2) Cauchy theorem
(3) Cayley's theorem
(4) Gauss theorem
60. The number of conjugacy classes in a group of order 25 is:
(1) 1
(2) 5
(3) 25
(4) none of these
61. Co-efficient of the vector $(5,-1,2)$ w. r. t. basis $(1,4,2),(4,2,1),(2,1,3)$ are :
(1) $(1,1,1)$
(2) $(-1,1,1)$
(3) $(1,2,3)$
(4) None of these
62. Which is an orthogonal set ?
(1) $\{(1,0,1),(1,0,-1),(0,1,0)\}$
(2) $\{(1,0,1),(1,0,-1),(0,3,4)\}$
(3) $\{(1,0,1),(1,0,-1),(-1,0,1)\}$
(4) None of these
63. Let $T: R^{2} \rightarrow R^{3}$ be linear transformation defined by $T\left(x_{1}, x_{2}\right)=\left(x_{1}-x_{2}, x_{2}-x_{1},-x_{1}\right)$. The nullty $T$ is :
(1) 2
(2) 1
(3) 0
(4) None of these
64. Let $F: R^{3} \rightarrow R^{2}$ be defined by $F(x, y, z)=(1 x, y+z)$, then :
(1) $F$ is linear transformation
(2) $F$ is not a linear transformation
(3) $F$ is invertible
(4) None of these
65. Let $V(F)$ be the vector space of all polynomial in $x$ in which an inner product is defined by $(f, g)=\int_{0}^{1} f(x) g(x) d x$. Then for $f(x)=x+2, g(x)=x^{2}-2 x-3,\langle f, g\rangle$ is equal to :
(1) $\frac{5}{2}$
(2) $\frac{5}{8}$
(3) $\frac{37}{4}$
(4) $-\frac{37}{4}$
66. The linear transformation $T: R^{2} \rightarrow R^{2}$ defined by $T(1,0)=(2,3), T(0,1)=(5,6)$ is :
(1) one one and onto
(2) one one but not onto
(3) onto but not one one
(4) none of these
67. Let $T: R^{3} \rightarrow R^{3}$ be defined by $T(x, y, z)=(x, y, 0)$ and $S: R^{2} \rightarrow R^{2}$ be defined by $S(x, y)=(2 x, 3 y)$, are linear transformation on the real vector spaces $R^{3}$ and $R^{2}$ respectively. Then which of the following is correct ?
(1) $T$ and $S$ are both singular
(2) $T$ and $S$ are both non-singular
(3) $T$ is singular but $S$ is non-singular
(4) None of these

## PG-EE-June, 2023/(Mathematics)(SET-X)/(B)

P. T. O.
68. The integral $\int_{0}^{1} x^{m-1}(1-x)^{n-1} d x$ is known as :
(1) Theta function
(2) Zeta function
(3) Gamma function
(4) Beta function
69. Fourier expansion of $f(x)=|x|$ in $[-\pi, \pi]$ is :
(1) $-\frac{4}{\pi}\left(\frac{\cos x}{1^{2}}+\frac{\cos 3 x}{3^{2}}+\frac{\cos 5 x}{5^{2}}+\ldots \ldots ..\right)$
(2) $\frac{\pi}{2}-\frac{4}{\pi}\left(\frac{\cos x}{1}+\frac{\cos 3 x}{3}+\frac{\cos 5 x}{5}+\ldots \ldots ..\right)$
(3) $\frac{\pi}{2}-\frac{4}{\pi}\left(\frac{\cos x}{1^{2}}+\frac{\cos 3 x}{3^{2}}+\frac{\cos 5 x}{5^{2}}+\ldots \ldots \ldots.\right)$.
(4) None of these
70. If the function $f(z)$ is continuous at $z_{0}$, then :
(1) $\cdot f(z)$ is differentiable at $z_{0}$
(2) $f(z)$ is not necessarily differentiable at $z_{0}$
(3) $f(z)$ is analytic at $z_{0}$
(4) None of these
71. The resolved part of a force $f$ in a direction perpendicular to it is:
(1) Maximum
(2) Minimum
(3) F
(4) 0
72. Centre of gravity of a thin uniform triangular lamina divides every median in the ratio:
(1) $1: 2$
(2) $2: 1$
(3) $2: 3$
(4) $1: 4$
73. The force of friction called into play when there is equilibrium is called :
(1) Limiting friction
(2) Dynamical friction
(3) Statical friction
(4) None of these
74. Which type of forces from the couple ?
(1) Two equal and unlike parallel forces with same lines of action.
(2) Two equal and unlike parallel forces with different lines of action.
(3) Two unequal and like parallel forces with different lines of action.
(4) Two unequal and unlike parallel forces with different lines of action.
75. The gravitational unit of moment in S.I. system is :
(1) Dyne-centimeter
(2) Newton meter
(3) $\mathrm{gm} . \mathrm{cm}$
(4) $\mathrm{kg} \cdot \mathrm{m}$
76. Every non-empty subset of R which is bounded above must have l.u.b. This result is known as :
(1) Law of well ordering
(2) Law of trichotomy
(3) Completeness axiom
(4) Archimedian property of real numbers

PG-EE-June, 2023/(Mathematics)(SET-X)/(B)
77. The g.l.b. of a set :
(1) belongs to the set
(2) does not belong to the set
(3) may or may not belong to the set
(4) none of these
78. If $\sum_{n=1}^{\infty} a_{n}$ is convergent and the sequence $\left\langle b_{n}>\right.$ is monotonic and bounded, then $\sum_{n=1}^{\infty} a_{n} b_{n}$ is convergent. This statement is known as :
(1) Abel's test
(2) Abel's lemma
(3) Dirichlet's test
(4) None of these
79. The series $\sum_{n=1}^{\infty} a_{n}$, where $a_{n}=\sqrt{n^{4}+1}-\sqrt{n^{4}-1}$ is :
(1) convergent
(2) divergent
(3) oscillating
(4) none of these
80. The infinite product $\left(1-\frac{1}{2^{2}}\right)\left(1-\frac{1}{3^{2}}\right)\left(1-\frac{1}{4^{2}}\right) \ldots \ldots .$. is :
(1) divergent
(2) convergent
(3) oscillating
(4) none of these
81. The value of $\lim _{x \rightarrow 0}(1+2 x)^{\frac{x+5}{2}}$ is :
(1) $\frac{e}{2}$
(2) $e^{2}$
(3) $e^{5}$
(4) $e^{10}$
82. Area bounded by the parabola $2 y=x^{2}$ and the line $x=y-4$ is equal to :
(1) 6
(2) 18
(3) $\infty$
(4) none of these
83. The radius of curvature at the origin of the curve $x^{2}+6 y^{2}+2 x-y=0$ is :
(1) $\frac{1}{5 \sqrt{2}}$
(2) $\frac{1}{3 \sqrt{5}}$
(3) $\frac{1}{2 \sqrt{5}}$
(4) $\frac{1}{\sqrt{5}}$
84. The nature of double points on the curve $(y-x)^{2}+x^{7}=0$ :
(1) a cusp
(2) a node
(3) conjugate point
(4) none of these
85. The asymptotes of the curve $r \cos \theta=a \cos 20$ :
(1) $r \cos \theta+a=0$
(2) $r \sin \theta+a=0$
(3) $r \tan \theta+a=0$
(4) none of these
86. What is the nature of the curve $13 x^{2}-18 x y+37 y^{2}+2 x+14 y-2=0$ ?
(1) circle
(2) sphere
(3) hyperbola
(4) ellipse
87. The equation of the plane which cuts the paraboloid $x^{2}-2 y^{2}=z$ in a conic with its centre at the point $\left(2, \frac{3}{2}, 4\right)$ is given by :
(1) $3 x+4 y+z=0$
(2) $2 x+4 y-z+7=0$
(3) $4 x-6 y-z+5=0$
(4) None of these
88. The latus rectum of the parabola $\left(a^{2}+b^{2}\right)\left(x^{2}+y^{2}\right)=(b x+a y-a b)^{2}$ is :
(1) $\frac{2 a b}{\sqrt{a^{2}+b^{2}}}$
(2) $a b \cdot \sqrt{a^{2}+b^{2}}$
(3) $\sqrt{a^{2}+b^{2}}$
(4) none of these
89. The equation of circle with radius ' $a$ ' and touching the initial line at pole is :
(1) $r=a \tan \theta$
(2) $r=2 a \sin \theta$
(3) $r=2 a \cot \theta$
(4) none of these
90. The points in which the line $\frac{x+1}{-1}=\frac{y-12}{5}=\frac{z-7}{2}$ cuts the surface $11 x^{2}-5 y^{2}+z^{2}=0$. are :
(1) $(3,2,1),(2,0,1)$
(2) $(1,2,3),(2,-3,1)$
(3) $(2,1,1),(1,0,-1)$
(4) None of these
91. The general solution of ordinary differential equation of ' $n$ ' order contains :
(1) $n$-arbitrary constants
(2) more than n-arbitrary constants
(3) any number of arbitrary constant
(4) none of these
92. General solution of $\frac{d y}{d x}+2 x y=2 e^{-x^{2}}$ is :
(1) $y=(2 x+c) e^{-x^{2}}$
(2) $y=2 x e^{-x}$
(3) $y=e^{-x}$
(4) none of these
93. The necessary condition for the equation $M(x, y) d x+N(x, y) d y=0$, to be exact is :
(1) $\frac{\partial N}{\partial y}=\frac{\partial M}{\partial x}$
(2) $\frac{\partial N}{\partial y}=-\frac{\partial M}{\partial x}$
(3) $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$
(4) $\frac{\partial M}{\partial y}=-\frac{\partial N}{\partial x}$
94. The equation $y d x+x d y=0$ is :
(1) Partial differential equation
(2) Exact differential equation
(3) Non-exact differential equation
(4) None of these
95. For the differential equation $x \frac{d y}{d x}-y=0$, which of the following function is not an integrating factor ?
(1) $\frac{1}{x^{2}}$
(2) $\frac{1}{y^{2}}$
(3) $\frac{1}{x y}$
(4) $\frac{1}{x+y}$
96. If $\vec{a}$ and $\vec{b}$ are two vectors such that $\vec{a} \times \vec{b}=0$ and $\vec{a} \cdot \vec{b}=0$, then :
(1) $\vec{a}$ is parallel to $\vec{b}$
(2) $\vec{a}$ is at right angle to $\vec{b}$
(3) either $\vec{a}$ or $\vec{b}$ is a null vector
(4) none of these
97. The unit normal vector to the surface $x^{4}-3 x y z+z^{2}+1=0$ at the point $(1,1,1)$ is :
(1) $\frac{i+3 j+k}{\sqrt{\pi}}$
(2) $\frac{i-3 j-k}{\sqrt{\pi}}$
(3) $\frac{i+3 j-k}{\sqrt{\pi}}$
(4) None of these
98. A vector $\vec{f}$ is called an irrotational vector if:
(1) div curl $\vec{f}=0$
(2) $\nabla \cdot \vec{f}=0$
(3) $\nabla \times \vec{f}=0$
(4) none of these
99. Which of the following is not true ?
(1) curl $(\operatorname{grad} \phi)=0$
(2) $\operatorname{div}(\operatorname{grad} \phi)=0$
(3) $\operatorname{div}(\operatorname{curl} \vec{f})=0$
(4) $\operatorname{curl}(\vec{r})=0$
100. Which of the following is related with Stoke's theorem?
(1) A line integral and a volume integral
(2) A surface integral and a volume integral
(3) A line integral, a surface integral and a volume integral
(4) A line integral and a surface integral
opened at 2:20 pm on 27:6.2023 used for uploading on university website Total No. of Printed Pages:21

## ARE ASKED TO DO SO)

Time: $11 / 4$ Hours
Max. Marks : 100 (in words)
Roll No. (in figures) $\qquad$
Date of Birth $\qquad$
Father's Name $\qquad$ Mother's Name $\qquad$
Date of Examination
(Signature of the Candidate)
(Signature of the Invigilator)

## CANDIDATES MUST READ THE FOLLOWING INFORMATION/INSTRUCTIONS BEFORE STARTING THE QUESTION PAPER.

## 1. All questions are compulsory.

2. The candidates must return the question booklet as well as OMR Answer-Sheet to the Invigilator concerned before leaving the Examination Hall, failing which a case of use of unfairmeans / mis-behaviour will be registered against him / her, in addition to lodging of an FIR with the police. Further the answer-sheet of such a candidate will not be evaluated.
3. Keeping in view the transparency of the examination system, carbonless OMR Sheet is provided to the candidate so that a copy of OMR Sheet may be kept by the candidate.
4. Question Booklet along with answer key of all the A, B, C \& D code shall be got uploaded on the University Website immediately after the conduct of Entrance Examination. Candidates may raise valid objection/complaint if any, with regard to discrepancy in the question booklet/answer key within 24 hours of uploading the same on the University Website. The complaint be sent by the students to the Controller of Examinations by hand or through email. Thereafter, no complaint in any case, will be considered.
5. The candidate must not do any rough work or writing in the OMR Answer-Sheet. Rough work, if any, may be done in the question booklet itself. Answers must not be ticked in the question booklet.
6. There will be no negative marking. Each correct answer will be awarded one full mark. Cutting, erasing, overwriting and more than one answer in OMR Answer-Sheet will be treated as incorrect answer.
7. Use only Black or Blue Ball Point Pen of good quality in the OMR Answer-Sheet.
8. Before answering the questions, the candidates should ensure that they have been supplied correct and complete booklet. Complaints, if any, regarding misprinting etc. will not be entertained 30 minutes after starting of the examination.
PG-EE-June, 2023/(Mathematics)(SET-X)/(C)
9. The resolved part of a force $f$ in a direction perpendicular to it is :
(1) Maximum
(2) Minimum
(3) F
(4) 0
10. Centre of gravity of a thin uniform triangular lamina divides every median in the ratio:
(1) $1: 2$
(2) $2: 1$
(3) $2: 3$
(4) $1: 4$
11. The force of friction called into play when there is equilibrium is called :
(1) Limiting friction
(2) Dynamical friction
(3) Statical friction
(4) None of these
12. Which type of forces from the couple ?
(1) Two equal and unlike parallel forces with same lines of action.
(2) Two equal and unlike parallel forces with different lines of action.
(3) Two unequal and like parallel forces with different lines of action.
(4) Two unequal and unlike parallel forces with different lines of action.
13. The gravitational unit of moment in S.I. system is :
(1) Dyne-centimeter
(2) Newton meter
(3) $\mathrm{gm} . \mathrm{cm}$
(4) kg. m
14. Every non-empty subset of $R$ which is bounded above must have l.u.b. This result is known as :
(1) Law of well ordering
(2) Law of trichotomy
(3) Completeness axiom
(4) Archimedian property of real numbers
15. The g.l.b. of a set :
(1) belongs to the set
(2) does not belong to the set
(3) may or may not belong to the set
(4) none of these
16. If $\sum_{n=1}^{\infty} a_{n}$ is convergent and the sequence $\left\langle b_{n}\right\rangle$ is monotonic and bounded, then $\sum_{n=1}^{\infty} a_{n} b_{n}$ is convergent. This statement is known as :
(1) Abel's test
(2) Abel's lemma
(3) Dirichlet's test
(4) None of these
17. The series $\sum_{n=1}^{\infty} a_{n}$, where $a_{n}=\sqrt{n^{4}+1}-\sqrt{n^{4}-1}$ is :
(1) convergent
(2) divergent
(3) oscillating
(4) none of these
18. The infinite product $\left(1-\frac{1}{2^{2}}\right)\left(1-\frac{1}{3^{2}}\right)\left(1-\frac{1}{4^{2}}\right) \ldots . . . . .$. is :
(1) divergent
(2) convergent
(3) oscillating
(4) none of these
19. The value of $\lim _{x \rightarrow 0}(1+2 x)^{\frac{x+5}{2}}$ is:
(1) $\frac{e}{2}$
(2) $e^{2}$
(3) $e^{5}$
(4) $e^{10}$
20. Area bounded by the parabola $2 y=x^{2}$ and the line $x=y-4$ is equal to :
(1) 6
(2) 18
(3) $\infty$
(4) none of these
21. The radius of curvature at the origin of the curve $x^{2}+6 y^{2}+2 x-y=0$ is :
(1) $\frac{1}{5 \sqrt{2}}$
(2) $\frac{1}{3 \sqrt{5}}$
(3) $\frac{1}{2 \sqrt{5}}$
(4) $\frac{1}{\sqrt{5}}$
22. The nature of double points on the curve $(y-x)^{2}+x^{7}=0$ :
(1) a cusp
(2) a node
(3) conjugate point
(4) none of these
23. The asymptotes of the curve $r \cos \theta=a \cos 2 \theta$ :
(1) $r \cos \theta+a=0$
(2) $r \sin \theta+a=0$
(3) $r \tan \theta+a=0$
(4) none of these
24. What is the nature of the curve $13 x^{2}-18 x y+37 y^{2}+2 x+14 y-2=0$ ?
(1) circle
(2) sphere
(3) hyperbola
(4) ellipse
25. The equation of the plane which cuts the paraboloid $x^{2}-2 y^{2}=z$ in a conic with its centre at the point $\left(2, \frac{3}{2}, 4\right)$ is given by :
(1) $3 x+4 y+z=0$
(2) $2 x+4 y-z+7=0$
(3) $4 x-6 y-z+5=0$
(4) None of these
26. The latus rectum of the parabola $\left(a^{2}+b^{2}\right)\left(x^{2}+y^{2}\right)=(b x+a y-a b)^{2}$ is :
(1) $\frac{2 a b}{\sqrt{a^{2}+b^{2}}}$
(2) $a b \cdot \sqrt{a^{2}+b^{2}}$
(3) $\sqrt{a^{2}+b^{2}}$
(4) none of these
27. The equation of circle with radius ' $a$ ' and touching the initial line at pole is :
(1) $r=a \tan \theta$
(2) $r=2 a \sin \theta$
(3) $r=2 a \cot \theta$
(4) none of these
28. The points in which the line, $\frac{x+1}{-1}=\frac{y-12}{5}=\frac{z-7}{2}$ cuts the surface $11 x^{2}-5 y^{2}+z^{2}=0$ are :
(1) $(3,2,1),(2,0,1)$
(2) $(1,2,3),(2,-3,1)$
(3) $(2,1,1),(1,0,-1)$
(4) None of these
29. The general solution of ordinary differential equation of ' $n$ ' order contains :
(1) n-arbitrary constants
(2) more than n-arbitrary constants
(3) any number of arbitrary constant
(4) none of these

## PG-EE-June, 2023/(Mathematics)(SET-X)/(C)

22. General solution of $\frac{d y}{d x}+2 x y=2 e^{-x^{2}}$ is :
(1) $y=(2 x+c) e^{-x^{2}}$
(2) $y=2 x e^{-x}$
(3) $y=e^{-x}$
(4) none of these
23. The necessary condition for the equation $M(x, y) d x+N(x, y) d y=0$, to be exact is :
(1) $\frac{\partial N}{\partial y}=\frac{\partial M}{\partial x}$
(2) $\frac{\partial N}{\partial y}=-\frac{\partial M}{\partial x}$
(3) $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$
(4) $\frac{\partial M}{\partial y}=-\frac{\partial N}{\partial x}$
24. The equation $y d x+x d y=0$ is :
(1) Partial differential equation
(2) Exact differential equation
(3) Non-exact differential equation
(4) None of these
25. For the differential equation $x \frac{d y}{d x}-y=0$, which of the following function is not an integrating factor?
(1) $\frac{1}{x^{2}}$
(2) $\frac{1}{y^{2}}$
(3) $\frac{1}{x y}$
(4) $\frac{1}{x+y}$
26. If $\vec{a}$ and $\vec{b}$ are two vectors such that $\vec{a} \times \vec{b}=0$ and $\vec{a} \cdot \vec{b}=0$, then:
(1) $\vec{a}$ is parallel to $\vec{b}$
(2) $\vec{a}$ is at right angle to $\vec{b}$
(3) either $\vec{a}$ or $\vec{b}$ is a null vector
(4) none of these
27. The unit normal vector to the surface $x^{4}-3 x y z+z^{2}+1=0$ at the point $(1,1,1)$ is :
(1) $\frac{i+3 j+k}{\sqrt{\pi}}$
(2) $\frac{i-3 j-k}{\sqrt{\pi}}$
(3) $\frac{i+3 j-k}{\sqrt{\pi}}$
(4) None of these
28. A vector $\vec{f}$ is called an irrotational vector if:
(1) div curl $\vec{f}=0$
(2) $\nabla \cdot \vec{f}=0$
(3) $\nabla \times \vec{f}=0$
(4) none of these
29. Which of the following is not true ?
(1) $\operatorname{curl}(\operatorname{grad} \phi)=0$
(2) $\operatorname{div}(\operatorname{grad} \phi)=0$
(3) $\operatorname{div}(\operatorname{curl} \vec{f})=0$
(4) $\operatorname{curl}(\vec{r})=0$
30. Which of the following is related with Stoke's theorem ?
(1) A line integral and a volume integral
(2) A surface integral and a volume integral
(3) A line integral, a surface integral and a volume integral
(4) A line integral and a surface integral
31. Polar form of C. R. equations are :
(1) $\frac{\partial u}{\partial r}=\frac{1}{r} \frac{\partial v}{\partial \theta}, \frac{\partial v}{\partial r}=-\frac{1}{r} \frac{\partial u}{\partial \theta}$
(2) $\frac{\partial u}{\partial \theta}=\frac{1}{r} \frac{\partial v}{\partial r}, \frac{\partial u}{\partial r}=r \frac{\partial v}{\partial 0}$
(3) $\frac{\partial u}{\partial \theta}=r \frac{\partial v}{\partial r}, \frac{\partial u}{\partial r}=\frac{1}{r} \frac{\partial v}{\partial \theta}$
(4) None of these
32. The fixed points of the mapping $W=\frac{5 z+4}{z+5}$ are :
(1) 2,2
(2) $2,-2$
(3) $-2,-2$
(4) None of these
33. The inverse point of the point $z$ with respect to the circle $|z|=r$ is:
(1) $\frac{r}{\bar{z}}$
(2) $\frac{r^{2}}{z}$
(3) $\frac{r^{2}}{\bar{z}}$
(4) None of these
34. Fourier series for the function $f(x)$ in the interval $(c, c+2 \pi)$ is :
(1) $f(x)=\sum_{n=1}^{\infty} a_{n} \cos n x+\sum_{n=1}^{\infty} b_{n} \sin n x$
(2) $f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \sin n x+\sum_{n=1}^{\infty} b_{n} \cos n x$
(3) $f(x)=\sum_{n=1}^{\infty} a_{n} \sin n x+\sum_{n=1}^{\infty} b_{n} \cos n x$
(4) $f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos n x+\sum_{n=1}^{\infty} b_{n} \sin x$
35. The value of $\Delta^{n}\left(a^{x}\right)$ is:
(1) $\left(a^{n h}+1\right) a^{x}$
(2) $\left(a^{n h}-1\right) a^{x}$
(3) $\left(a^{h}+1\right)_{a^{x}}^{n}$
(4) $\left(a^{h}-1\right)_{a^{x}}{ }^{x}$
36. The order of convergence of Newton-Raphson method is:
(1) 1
(2) 1.618
(3) 2
(4) None of these
37. Runge-Kutta method is used for :
(1) Interpolation
(2) Numerical differentiation
(3) Numerical Integration
(4) Numerical solution of ordinary differential equation
38. The values of a function $f(x)$ are tabulated below :

| $x$ | 0 | 1 | 2 | 3 |
| :---: | :---: | :---: | :---: | :---: |
| $f(x)$ | 1 | 2 | 1 | 10 |

(1) $2 x^{3}-7 x^{2}+6 x+1$
(2) $x^{3}-7 x^{2}-6 x+1$
(3) $2 x^{3}+7 x^{2}-6 x+2$
(4) None of these
39. In decomposition method, if $u_{i i}=1$, then the method is called :
(1) Doolittle method
(2) Crout's method
(3) Euler's method
(4) None of these
40. The quadrature formulae $\int_{-1}^{1} f(x) d x=\frac{1}{3}[f(-1)+4 f(0)+f(1)]$ with step length $h=1.0$ is exact for polynomial of degree less than or equal to :
(1) Two
(2) Three
(3) Four
(4) None of these
41. If $f$ is bounded function defined on $[a, b]$ and $P$ be a partition of $f[a, b]$, then which of the following is odd?
(1) $L(f, P) \leq U(f, P)$
(2) $L(-f, P)=-U(f, P)$
(3) $U(P,-f)=-L(P, f)$
(4) $U(-f, P)=-U(f, P)$
42. Which of the following is not a bounded metric ?
(1) $d(x, y)=|x-y|$
(2) $d(x, y)=\min \{2,|x-y|\}$
(3) discrete metric
(4) $d^{*}(x, y)=\frac{d(x, y)}{1+d(x, y)}$
where $d$ is any metric on $X$.
43. Which one is a dense set ?
(1) the subset $A=\left\{\frac{1}{n}, n \in N\right\}$ in $R$
(2) set of natural number in $R$
(3) $Q$ in $R$
(4) none of these
44. If $f(x)=\frac{1}{x^{2}}$ on $[1,4]$ and $P=[1,2,3,4]$ be the partition of $[1,4]$, then $L(f, P)$ is equal to :
(1) $\frac{70}{144}$
(2) $\frac{61}{144}$
(3) $\frac{30}{144}$
(4) none of these
45. The integral $\int_{-\infty}^{\infty} \frac{d x}{1+x^{2}}$ is :
(1) convergent
(2) divergent
(3) conditionally convergent
(4) none of these

PG-EE-June, 2023/(Mathematics)(SET-X)/(C)
P. T. O.
46. A sphere (open or closed) is always :
(1) empty
(2) non-empty
(3) singleton set
(4) none of these
47. What is odd against the given statement "A set is closed iff" ?
(1) $A=\bar{A}$
(2) $d(A) \subset A$
(3) $A^{C}$ is open
(4) $A=\AA$
48. The order of $a$ and $x$ in a group are respectively 3 and 4. Then the order of $x^{-1} a x$ is :
(1) 12
(2) 8
(3) 5
(4) 3
49. Every group is isomorphic to a permutation group. This result is known as :
(1) Lagrange theorem
(2) Cauchy theorem
(3) Cayley's theorem
(4) Gauss theorem
50. The number of conjugacy classes in a group of order 25 is :
(1) 1
(2) 5
(3) 25
(4) none of these
51. If $\lim _{x \rightarrow 0} \frac{a e^{x}-b \cos x+c e^{-x}}{x \sin x}=2$, then value of $b$ is equal to :
(1) -2
(2) -1
(3) 0
(4) 2
52. If $u=\log \left(x^{3}+y^{3}+z^{3}-3 x y z\right)$, then value of $\frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}+\frac{\partial u}{\partial z}$ is equal to :
(1) $\frac{1}{x^{2}+y^{2}+z^{2}}$
(2) $\frac{1}{x^{3}+y^{3}+z^{3}}$
(3) $\frac{3}{x+y+z}$
(4) None of these
53. The equation of normal to the surface $x y z=4$ at the point $(1,2,2)$ is equal to :
(1) $\frac{X-1}{2}=\frac{Y-2}{1}=\frac{Z-2}{1}$
(2) $\frac{X-1}{1}=\frac{Y-2}{2}=\frac{Z-2}{1}$
(3) $\frac{X-1}{3}=\frac{Y-2}{2}=\frac{Z-2}{2}$
(4) None of these
54. The necessary and sufficient condition for the curve to be a plane curve is:
(1) $\left[\vec{r} \vec{r}^{\prime} \overrightarrow{r^{\prime}}\right]=0$
(2) $\left[\vec{r}^{\prime} \vec{r}^{\prime} \vec{r}^{\prime \prime}\right]=0$
(3) $\left[\overrightarrow{r^{\prime}} \cdot \overrightarrow{r^{\prime \prime}} \vec{r}\right]=0$
(4) none of these
55. The maximum value of the function $\sin x+\sin y+\sin (\sin x+y)$ is :
(1) $\frac{3 \sqrt{3}}{2}$
(2) $\sqrt{3}$
(3) $\frac{\sqrt{3}}{2}$
(4) None of these
56. A partial differential equation by eliminating the arbitrary functions from : $z=f(x-a y)+g(x+a y)$ is given by :
(1) $\frac{\partial^{2} z}{\partial x^{2}}=\frac{\partial^{2} z}{\partial y^{2}}$
(2) $\frac{\partial^{2} z}{\partial y^{2}}=a^{2} \frac{\partial^{2} z}{\partial x^{2}}$
(3) $\frac{\partial^{2} z}{\partial x^{2}}=a^{2} \frac{\partial^{2} z}{\partial y^{2}}$
(4) none of these
57. The particular integral of the differential equation $\frac{\partial^{3} z}{\partial x^{3}}-3 \frac{\partial^{3} z}{\partial x^{2} \partial y}+4 \frac{\partial^{3} z}{\partial y^{3}}=e^{x-2 y}$ is :
(1) $\frac{1}{8} e^{x+2 y}$
(2) $\frac{1}{2} e^{2 y}$
(3) $\frac{1}{27} e^{x+2 y}$
(4) none of these
58. The partial differential equation $\frac{\partial^{2} z}{\partial x^{2}}-7 \frac{\partial^{2} z}{\partial x \partial y}+6 \frac{\partial^{2} z}{\partial y^{2}}=0$ is :
(1) Hyperbolic
(2) Parabolic
(3) Elliptic
(4) None of these
59. The real characteristics of the partial differential equation $\frac{\partial^{2} z}{\partial x^{2}}+4 \frac{\partial^{2} z}{\partial x \partial y}+4 \frac{\partial^{2} z}{\partial y^{2}}=0 \cdot$ is :
(1) $4 x=y+c$
(2) $3 x+y=0$
(3) $8 x-y=0$
(4) $y-2 x=c$
60. To two dimensional heat equation is given by :
(1) $\frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}=\frac{1}{c} \frac{\partial u}{\partial t}$
(2) $\frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}=8$
(3) $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial u}{\partial y}=\frac{1}{c^{2}} \frac{\partial^{2} u}{\partial x^{2}}$
(4) $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=\frac{1}{c^{2}} \frac{\partial u}{\partial t}$
61. The number of non-isomorphic abelian groups of order 8 is :
(1) 1
(2) 2
(3) 3
(4) none of these
62. The number of prime ideals of $Z_{10}$ is:
(1) 2
(2) 1
(3) 0
(4) none of these
63. The ring of $Z, Q, R, C, Z_{5}$ are :
(1) All integral domains
(2) None of them is integral domain
(3) Some of them is integral domain
(4) None of these

## C

64. Which statement is wrong ?
$F$ is a field, then $F[x]$ is :
(1) Euclidean domain
(2) Principal ideal domain
(3) Unique factorization domain
(4) None of these
65. In S. H. M. the maximum velocity is :
(1) $V_{\max }=a$
(2) $V_{\max }=\sqrt{\mu} a$
(3) $V_{\max }=\mu a$
(4) None of these
66. The uniform force that will move on kg . mass from rest through one metre in one second is :
(1) 4 Newton
(2) 3 Newton
(3) 2 Newton
(4) None of these
67. At an apse, the radius vector is :
(1) perpendicular to the tangent
(2) parallel to the tangent
(3) perpendicular to the apsidal distance
(4) None of these
68. The radial and transverse acceleration of a particle moving along a plane curve $r=f(\theta)$ are :
(1) $r \frac{d r}{d t}, \frac{d \theta}{d t}$
(2) $\frac{d r}{d t} r \frac{d \theta}{d t}$
(3) $\frac{d^{2} r}{d t^{2}}-r\left(\frac{d \theta}{d t}\right)^{2}, \frac{1}{r} \frac{d}{d t}\left[\dot{r}^{2} \frac{d \theta}{d t}\right]$
(4) None of these
69. Central force is defined as :
(1) A force whose line of action always passes through variable point.
(2) A force whose line of action always passes through a fixed point.
(3) A force whose line of action does not pass through a fixed point.
(4) None of these
70. Frequency of a simple harmonic motion is :
(1) $\frac{\mu}{\pi}$
(2) $\frac{\pi}{\mu}$
(3) $\frac{\sqrt{\mu}}{\pi}$
(4) $\frac{\sqrt{\mu}}{2 \pi}$
71. Co-efficient of the vector $(5,-1,2)$ w. r. t. basis $(1,4,2),(4,2,1),(2,1,3)$ are :
(1) $(1,1,1)$
(2) $(-1,1,1)$
(3) $(1,2,3)$
(4) None of these

## PG-EE-June, 2023/(Mathematics)(SET-X)/(C)

72. Which is an orthogonal set ?
(1) $\{(1,0,1),(1,0,-1),(0,1,0)\}$
(2) $\{(1,0,1),(1,0,-1),(0,3,4)\}$
(3) $\{(1,0,1),(1,0,-1),(-1,0,1)\}$
(4) None of these
73. Let $T: R^{2} \rightarrow R^{3}$ be linear transformation defined by $T\left(x_{1}, x_{2}\right)=\left(x_{1}-x_{2}, x_{2}-x_{1},-x_{1}\right)$. The nullty $T$ is :
(1) 2
(2) 1
(3) 0
(4) None of these
74. Let $F: R^{3} \rightarrow R^{2}$ be defined by $F(x, y, z)=(1 x, y+z)$, then :
(1) $F$ is linear transformation
(2) $F$ is not a linear transformation
(3) $F$ is invertible
(4) None of these
75. Let $V(F)$ be the vector space of all polynomial in $x$ in which an inner product is defined by $(f, g)=\int_{0}^{1} f(x) g(x) d x$. Then for $f(x)=x+2, g(x)=x^{2}-2 x-3,\langle f, g\rangle$ is equal to :
(1) $\frac{5}{2}$
(2) $\frac{5}{8}$
(3) $\frac{37}{4}$
(4) $-\frac{37}{4}$
76. The linear transformation $T: R^{2} \rightarrow R^{2}$ defined by $T(1,0)=(2,3), T(0,1)=(5,6)$ is :
(1) one one and onto
(2) one one but not onto
(3) onto but not one one
(4) none of these
77. Let $T: R^{3} \rightarrow R^{3}$ be defined by $T(x, y, z)=(x, y, 0)$ and $S: R^{2} \rightarrow R^{2}$ be defined by $S(x, y)=(2 x, 3 y)$, are linear transformation on the real vector spaces $R^{3}$ and $R^{2}$ respectively. Then which of the following is correct ?
(1) $T$ and $S$ are both singular
(2) $T$ and $S$ are both non-singular
(3) $T$ is singular but $S$ is non-singular
(4) None of these
78. The integral $\int_{0}^{1} x^{m-1}(1-x)^{n-1} d x$ is known as :
(1) Theta function
(2) Zeta function
(3) Gamma function
(4) Beta function
79. Fourier expansion of $f(x)=|x|$ in $[-\pi, \pi]$ is :
(1) $-\frac{4}{\pi}\left(\frac{\cos x}{1^{2}}+\frac{\cos 3 x}{3^{2}}+\frac{\cos 5 x}{5^{2}}+\ldots . . . ..\right)$
(2) $\frac{\pi}{2}-\frac{4}{\pi}\left(\frac{\cos x}{1}+\frac{\cos 3 x}{3}+\frac{\cos 5 x}{5}+\ldots \ldots . ..\right)$
(3) $\frac{\pi}{2}-\frac{4}{\pi}\left(\frac{\cos x}{1^{2}}+\frac{\cos 3 x}{3^{2}}+\frac{\cos 5 x}{5^{2}}+\ldots \ldots \ldots.\right)$
(4) None of these
80. If the function $f(z)$ is continuous at $z_{0}$, then :
(1) $f(z)$ is differentiable at $z_{0}$
(2) $f(z)$ is not necessarily differentiable at $z_{0}$
(3) $f(z)$ is analytic at $z_{0}$
(4) None of these
81. The remainder in the divison of $2^{20}$ by 7 is:
(1) 0
(2) 1
(3) 2
(4) 4
82. Every natural number greater than one has at least:
(1) one prime factor
(2) two prime factor
(3) two composite factors
(4) none of these
83. Find the highest power of 7 contained in 1000!.
(1) 264
(2) 164
(3) 64
(4) none of these
84. If $|\cos (\alpha-i \beta)|=1$, then $\sin ^{2} \alpha$ is equal to :
(1) $\cos ^{2} \beta$
(2) $\sin h^{2} \beta$
(3) $\tan h^{2} \beta$
(4) none of these
85. If $p$ is a prime number then $(p-1)!+1 \equiv 0(\bmod p)$ is the statement of :
(1) Chinese remainder theorem
(2) Fermat's theorem
(3) Wilson's theorem
(4) Reduced residue theorem
86. If $A$ is a non-singular matrix of order $n$, then $\operatorname{adj}(\operatorname{adj} A)$ is equal to :
(1) $|A|^{n+1} A$
(2) $|A|^{n} A$
(3) $|A|^{n-1} A$
(4) $|A|^{n-2} A$
87. The vectors $\left[\begin{array}{l}2 \\ 0 \\ k\end{array}\right],\left[\begin{array}{c}3 \\ -1 \\ 5\end{array}\right],\left[\begin{array}{c}5 \\ -1 \\ 1\end{array}\right]$ are linearly dependent, then value of $k$ is equal to:
(1) -4
(2) -2
(3) 0
(4) 4
88. The characteristics roots of a Hermitian matrix are :
(1) Imaginary
(2) Real
(3) Complex number
(4) None of these
89. Determinant of an idempotent matrix equals :
(1) 1
(2) 0
(3) 1 or 0
(4) none of these
90. The common roots of the equations $x^{4}+3 x^{3}-5 x^{2}-6 x-8=0$ and $x^{4}+x^{3}-9 x^{2}+10 x-8=0$ are :
(1) 2,3
(2) 3,4
(3) 4,0
(4) $-4,2$
91. Generating function for Bessel function $J_{n}(x)$ is :
(1) $e^{\frac{x}{2}\left(t-\frac{1}{t}\right)}$
(2) $e^{\frac{x}{2}\left(\frac{1}{t}-t\right)}$
(3) $e^{x\left(t-\frac{1}{t}\right)}$
(4) None of these
92. Rodrigue formula for Legendre polynomials is :
(1) $P_{n}(x)=\frac{1}{2^{n} n!} \frac{d^{n}}{d x^{n}}\left(x^{2}-1\right)^{n}$
(2) $P_{n}(x)=\frac{1}{2^{n}} \frac{d^{n}}{d x^{n}}\left(x^{2}-1\right)^{n}$
(3) $P_{n}(x)=\frac{1}{2^{n} n!} \frac{d^{n}}{d x^{n}}\left(x^{2}+1\right)^{n}$
(4) None of these
93. The Laplace transform of $t e^{-t} \sin 3 t$ is equal to :
(1) $\frac{36}{\left(s^{2}+2 s+10\right)^{2}}$
(2) $\frac{6(s+1)}{\left(s^{2}+2 s+10\right)^{2}}$
(3) $\frac{s+1}{\left(s^{2}+2 s+6\right)^{2}}$
(4) None of these
94. The generating function of Legendre's polynomials is :
(1) $\left(1+2 x t+t^{2}\right)^{3 / 2}$
(2) $\left(1+2 x+t^{2}\right)^{1 / 2}$
(3) $\left(1-2 x t+t^{2}\right)^{-1 / 2}$
(4) None of these
95. The sine Fourier transform of $2 e^{-5 x}$ is :
(1) $\frac{5 s}{s^{2}+4}$
(2) $\frac{-5 s}{s^{2}+4}$
(3) $\frac{5 s}{s^{2}+25}$
(4) None of these
96. Which of the following keyword is used for the storage class ?
(1) print $f$.
(2) external
(3) auto
(4) none of these
97. What will be the maximum size of a double variable ?
(1) 16 bytes
(2) 8 bytes
(3) 4 bytes
(4) none of these
98. The continue command cannot be used with :
(1) switch
(2) for
(3) do
(4) none of these
99. The bitwise OR operator is used to :
(1) divide number
(2) set the desired bits to 0
(3) set the desired bits to 1
(4) none of these
100. C is which kind of language ?
(1) machine
(2) assembly
(3) objected-oriented
(4) none of these
$\qquad$
Time: 11/4 Hours
Roll No. (in figures) $\qquad$ Max. Marks : 100

Total Questions : 100 (in words) $\qquad$ Name $\qquad$ Date of Birth $\qquad$
Father's Name $\qquad$ Mother's Name $\qquad$ Date of Examination $\qquad$
(Signature of the Candidate)
(Signature of the Invigilator)
CANDIDATES MUST READ THE FOLLOWING INFORMATION/INSTRUCTIONS BEFORE STARTING THE QUESTION PAPER.

1. All questions are compulsory.
2. The candidates must return the question booklet as well as OMR Answer-Sheet to the Invigilator concerned before leaving the Examination Hall, failing which a case of use of unfairmeans / mis-behaviour will be registered against him / her, in addition to lodging of an FIR with the police. Further the answer-sheet of such a candidate will not be evaluated.
3. Keeping in view the transparency of the examination system, carbonless OMR Sheet is provided to the candidate so that a copy of OMR Sheet may be kept by the candidate.
4. Question Booklet along with answer key of all the A, B, C \& D code shall be got uploaded on the University Website immediately after the conduct of Entrance Examination. Candidates may raise valid objection/complaint if any, with regard to discrepancy in the question booklet/answer key within 24 hours of uploading the same on the University Website. The complaint be sent by the students to the Controller of Examinations by hand or through email. Thereafter, no complaint in any case, will be considered.
5. The candidate must not do any rough work or writing in the OMR Answer-Sheet. Rough work, if any, may be done in the question booklet itself. Answers must not be ticked in the question booklet.
6. There will be no negative marking. Each correct answer will be awarded one full mark. Cutting, erasing, overwriting and more than one answer in OMR Answer-Sheet will be treated as incorrect answer.
7. Use only Black or Blue Ball Point Pen of good quality in the OMR Answer-Sheet.
8. Before answering the questions, the candidates should ensure that they have been supplied correct and complete booklet. Complaints, if any, regarding misprinting etc. will not be entertained 30 minutes after starting of the examination.
PG-EE-June, 2023/(Mathematics)(SET-X)/(D)
9. The remainder in the divison of $2^{20}$ by 7 is :
(1) 0
(2) 1
(3) 2
(4) 4
10. Every natural number greater than one has at least :
(1) one prime factor
(2) two prime factor
(3) two composite factors
(4) none of these
11. Find the highest power of 7 contained in 1000 !
(1) 264
(2) 164
(3) 64
(4) none of these
12. If $|\cos (\alpha-i \beta)|=1$, then $\sin ^{2} \alpha$ is equal to :
(1) $\cosh ^{2} \beta$
(2) $\sin h^{2} \beta$
(3) $\tan h^{2} \beta$
(4) none of these
13. If $p$ is a prime number then $(p-1)!+1 \equiv 0(\bmod p)$ is the statement of :
(1) Chinese remainder theorem
(2) Fermat's theorem
(3) Wilson's theorem
(4) Reduced residue theorem
14. If $A$ is a non-singular matrix of order $n$, then $\operatorname{adj}(\operatorname{adj} A)$ is equal to :
(1) $|A|^{n+1} A$
(2) $|A|^{n} A$
(3) $|A|^{n-1} A$
(4) $|A|^{n-2} A$
15. The vectors $\left[\begin{array}{l}2 \\ 0 \\ k\end{array}\right]\left[\begin{array}{c}3 \\ -1 \\ 5\end{array}\right],\left[\begin{array}{c}5 \\ -1 \\ 1\end{array}\right]$ are linearly dependent, then value of $k$ is equal to :
(1) -4
(2) -2
(3) 0
(4) 4
16. The characteristics roots of a Hermitian matrix are :
(1) Imaginary
(2) Real
(3) Complex number
(4) None of these
17. Determinant of an idempotent matrix equals :
(1) 1
(2) 0
(3) 1 or 0
(4) none of these
18. The common roots of the equations $x^{4}+3 x^{3}-5 x^{2}-6 x-8=0$ and $x^{4}+x^{3}-9 x^{2}+10 x-8=0$ are :
(1) 2,3
(2) 3,4
(3) 4,0
(4) $-4,2$
19. Polar form of C. R. equations are :
(1) $\frac{\partial u}{\partial r}=\frac{1}{r} \frac{\partial v}{\partial \theta}, \frac{\partial v}{\partial r}=-\frac{1}{r} \frac{\partial u}{\partial \theta}$
(2) $\frac{\partial u}{\partial \theta}=\frac{1}{r} \frac{\partial v}{\partial r}, \frac{\partial u}{\partial r}=r \frac{\partial v}{\partial \theta}$
(3) $\frac{\partial u}{\partial \theta}=r \frac{\partial v}{\partial r}, \frac{\partial u}{\partial r}=\frac{1}{r} \frac{\partial v}{\partial \theta}$
(4) None of these
20. The fixed points of the mapping $W=\frac{5 z+4}{z+5}$ are :
(1) 2,2
(2) $2,-2$
(3) $-2,-2$
(4) None of these
21. The inverse point of the point $z$ with respect to the circle $|z|=r$ is :
(1) $\frac{r}{\bar{z}}$
(2) $\frac{r^{2}}{z}$
(3) $\frac{r^{2}}{\bar{z}}$
(4) None of these
22. Fourier series for the function $f(x)$ in the interval $(c, c+2 \pi)$ is :
(1) $f(x)=\sum_{n=1}^{\infty} a_{n} \cos n x+\sum_{n=1}^{\infty} b_{n} \sin n x$
(2) $f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \sin n x+\sum_{n=1}^{\infty} b_{n} \cos n x$
(3) $f(x)=\sum_{n=1}^{\infty} a_{n} \sin n x+\sum_{n=1}^{\infty} b_{n} \cos n x$
(4) $f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos n x+\sum_{n=1}^{\infty} b_{n} \sin x$
23. The value of $\Delta^{n}\left(a^{x}\right)$ is :
(1) $\left(a^{n h}+1\right) a^{x}$
(2) $\left(a^{n h}-1\right) a^{x}$
(3) $\left(a^{h}+1\right)_{a^{n}}^{x}$
(4) $\left(a^{h}-1\right)_{a^{n}}^{x}$
24. The order of convergence of Newton-Raphson method is :
(1) 1
(2) 1.618
(3) 2
(4) None of these
25. Runge-Kutta method is used for:
(1) Interpolation
(2) Numerical differentiation
(3) Numerical Integration
(4) Numerical solution of ordinary differential equation
26. The values of a function $f(x)$ are tabulated below :

| $x$ | 0 | 1 | 2 | 3 |
| :---: | :---: | :---: | :---: | :---: |
| $f(x)$ | 1 | 2 | 1 | 10 |

(1) $2 x^{3}-7 x^{2}+6 x+1$
(2) $x^{3}-7 x^{2}-6 x+1$
(3) $2 x^{3}+7 x^{2}-6 x+2$
(4) None of these
19. In decomposition method, if $u_{i i}=1$, then the method is called:
(1) Doolittle method
(2) Crout's method
(3) Euler's method
(4) None of these
20. The quadrature formulae $\int_{-1}^{1} f(x) d x=\frac{1}{3}[f(-1)+4 f(0)+f(1)]$ with step length $h=1.0$ is exact for polynomial of degree less than or equal to :
(1) Two
(2) Three
(3) Four
(4) None of these
21. The number of non-isomorphic abelian groups of order 8 is :
(1) 1
(2) 2
(3) 3
(4) none of these
22. The number of prime ideals of $\mathrm{Z}_{10}$ is :
(1) 2
(2) 1
(3) 0
(4) none of these
23. The ring of $Z, Q, R, C, Z_{5}$ are :
(1) All integral domains
(2) None of them is integral domain
(3) Some of them is integral domain
(4) None of these
24. Which statement is wrong ?
$F$ is a field, then $F[x]$ is :
(1) Euclidean domain
(2) Principal ideal domain
(3) Unique factorization domain
(4) None of these
25. In S. H. M. the maximum velocity is :
(1) $V_{\max }=a$
(2) $V_{\max }=\sqrt{\mu} a$
(3) $V_{\max }=\mu a$
(4) None of these
26. The uniform force that will move on kg . mass from rest through one metre in one second is :
(1) 4 Newton
(2) 3 Newton
(3) 2 Newton
(4) None of these
27. At an apse, the radius vector is :
(1) perpendicular to the tangent
(2) parallel to the tangent
(3) perpendicular to the apsidal distance
(4) None of these
28. The radial and transverse acceleration of a particle moving along a plane curve $r=f(\theta)$ are :
(1) $r \frac{d r}{d t}, \frac{d \theta}{d t}$
(2) $\frac{d r}{d t}, r \frac{d \theta}{d t}$
(3) $\frac{d^{2} r}{d t^{2}}-r\left(\frac{d \theta}{d t}\right)^{2}, \frac{1}{r} \frac{d}{d t}\left[r^{2} \frac{d \theta}{d t}\right]$
(4) None of these
29. Central force is defined as :
(1) A force whose line of action always passes through variable point.
(2) A force whose line of action always passes through a fixed point.
(3) A force whose line of action does not pass through a fixed point.
(4) None of these
30. Frequency of a simple harmonic motion is :
(1) $\frac{\mu}{\pi}$
(2) $\frac{\pi}{\mu}$
(3) $\frac{\sqrt{\mu}}{\pi}$
(4) $\frac{\sqrt{\mu}}{2 \pi}$
31. Generating function for Bessel function $J_{n}(x)$ is:
(1) $e^{\frac{x}{2}\left(t-\frac{1}{t}\right)}$
(2) $e^{x\left(\frac{1}{2}-t\right)}$
(3) $e^{x\left(t-\frac{1}{t}\right)}$
(4) None of these
32. Rodrigue formula for Legendre polynomials is :
(1) $P_{n}(x)=\frac{1}{2^{n} n!} \frac{d^{n}}{d x^{n}}\left(x^{2}-1\right)^{n}$
(2) $P_{n}(x)=\frac{1}{2^{n}} \frac{d^{n}}{d x^{n}}\left(x^{2}-1\right)^{n}$
(3) $P_{n}(x)=\frac{1}{2^{n} n!} \frac{d^{n}}{d x^{n}}\left(x^{2}+1\right)^{n}$
(4) None of these
33. The Laplace transform of $t e^{-t} \sin 3 t$ is equal to:
(1) $\frac{36}{\left(s^{2}+2 s+10\right)^{2}}$
(2) $\frac{6(s+1)}{\left(s^{2}+2 s+10\right)^{2}}$
(3) $\frac{s+1}{\left(s^{2}+2 s+6\right)^{2}}$
(4) None of these
34. The generating function of Legendre's polynomials is :
(1) $\left(1+2 x t+t^{2}\right)^{3 / 2}$
(2) $\left(1+2 x+t^{2}\right)^{1 / 2}$
(3) $\left(1-2 x t+t^{2}\right)^{-1 / 2}$
(4) None of these
35. The sine Fourier transform of $2 e^{-5 x}$ is :
(1) $\frac{5 s}{s^{2}+4}$
(2) $\frac{-5 s}{s^{2}+4}$
(3) $\frac{5 s}{s^{2}+25}$
(4) None of these
36. Which of the following keyword is used for the storage class ?
(1) print f
(2) external
(3) auto
(4) none of these
37. What will be the maximum size of a double variable ?
(1) 16 bytes
(2) 8 bytes
(3) 4 bytes
(4) none of these
38. The continue command cannot be used with :
(1) switch
(2) for
(3) do
(4) none of these
39. The bitwise OR operator is used to :
(1) divide number
(2) set the desired bits to 0
(3) set the desired bits to 1
(4) none of these
40. C is which kind of language ?
(1) machine
(2) assembly
(3) objected-oriented
(4) none of these
41. If $\lim _{x \rightarrow 0} \frac{a e^{x}-b \cos x+c e^{-x}}{x \sin x}=2$, then value of $b$ is equal to :
(1) -2
(2) -1
(3) 0
(4) 2
42. If $u=\log \left(x^{3}+y^{3}+z^{3}-3 x y z\right)$, then value of $\frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}+\frac{\partial u}{\partial z}$ is equal to :
(1) $\frac{1}{x^{2}+y^{2}+z^{2}}$
(2) $\frac{1}{x^{3}+y^{3}+z^{3}}$
(3) $\frac{3}{x+y+z}$
(4) None of these
43. The equation of normal to the surface $x y z=4$ at the point $(1,2,2)$ is equal to :
(1) $\frac{X-1}{2}=\frac{Y-2}{1}=\frac{Z-2}{1}$
(2) $\frac{X-1}{1}=\frac{Y-2}{2}=\frac{Z-2}{1}$
(3) $\frac{X-1}{3}=\frac{Y-2}{2}=\frac{Z-2}{2}$
(4) None of these
44. The necessary and sufficient condition for the curve to be a plane curve is :
(1) $\left[\vec{r} \vec{r} \cdot \overrightarrow{r^{\prime}}\right]=0$
(2) $\left[\overrightarrow{r^{\prime}} \overrightarrow{r^{\prime \prime}} \vec{r}^{\prime \prime \prime}\right]=0$
(3) $\left[\overrightarrow{r^{\prime \prime}} \overrightarrow{r^{\prime \prime}} \vec{r}\right]=0$
(4) none of these
45. The maximum value of the function $\sin x+\sin y+\sin (\sin x+y)$ is :
(1) $\frac{3 \sqrt{3}}{2}$
(2) $\sqrt{3}$
(3) $\frac{\sqrt{3}}{2}$
(4) None of these
46. A partial differential equation by eliminating the arbitrary functions from : $z=f(x-a y)+g(x+a y)$ is given by :
(1) $\frac{\partial^{2} z}{\partial x^{2}}=\frac{\partial^{2} z}{\partial y^{2}}$
(2) $\frac{\partial^{2} z}{\partial y^{2}}=a^{2} \frac{\partial^{2} z}{\partial x^{2}}$
(3) $\frac{\partial^{2} z}{\partial x^{2}}=a^{2} \frac{\partial^{2} z}{\partial y^{2}}$
(4) none of these
47. The particular integral of the differential equation $\frac{\partial^{3} z}{\partial x^{3}}-3 \frac{\partial^{3} z}{\partial x^{2} \partial y}+4 \frac{\partial^{3} z}{\partial y^{3}}=e^{x+2 y}$ is :
(1) $\frac{1}{8} e^{x+2 y}$
(2) $\frac{1}{2} e^{2 y}$
(3) $\frac{1}{27} e^{x+2 y}$
(4) none of these
48. The partial differential equation $\frac{\partial^{2} z}{\partial x^{2}}-7 \frac{\partial^{2} z}{\partial x \partial y}+6 \frac{\partial^{2} z}{\partial y^{2}}=0$ is :
(1) Hyperbolic
(2) Parabolic
(3) Elliptic
(4) None of these
49. The real characteristics of the partial differential equation $\frac{\partial^{2} z}{\partial x^{2}}+4 \frac{\partial^{2} z}{\partial x \partial y}+4 \frac{\partial^{2} z}{\partial y^{2}}=0$ is :
(1) $4 x=y+c$
(2) $3 x+y=0$
(3) $8 x-y=0$
(4) $y-2 x=c$
50. To two dimensional heat equation is given by :
(1) $\frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}=\frac{1}{c} \frac{\partial u}{\partial t}$
(2) $\frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}=8$
(3) $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial u}{\partial y}=\frac{1}{c^{2}} \frac{\partial^{2} u}{\partial x^{2}}$
(4) $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=\frac{1}{c^{2}} \frac{\partial u}{\partial t}$
51. The value of $\lim _{x \rightarrow 0}(1+2 x)^{\frac{x+5}{2}}$ is:
(1) $\frac{e}{2}$
(2) $e^{2}$

- (3) $e^{5}$
(4) $e^{10}$

52. Area bounded by the parabola $2 y=x^{2}$ and the line $x=y-4$ is equal to :
(1) 6
(2) 18
(3) $\infty$
(4) none of these
53. The radius of curvature at the origin of the curve $x^{2}+6 y^{2}+2 x-y=0$ is :
(1) $\frac{1}{5 \sqrt{2}}$
(2) $\frac{1}{3 \sqrt{5}}$
(3) $\frac{1}{2 \sqrt{5}}$
(4) $\frac{1}{\sqrt{5}}$

PG-EE-June, 2023/(Mathematics)(SET-X)/(D)
54. The nature of double points on the curve $(y-x)^{2}+x^{7}=0$ :
(1) a cusp
(2) a node
(3) conjugate point
(4) none of these
55. The asymptotes of the curve $r \cos \theta=a \cos 2 \theta$ :
(1) $r \cos \theta+a=0$
(2) $r \sin \theta+a=0$
(3) $r \tan \theta+a=0$
(4) none of these
56. What is the nature of the curve $13 x^{2}-18 x y+37 y^{2}+2 x+14 y-2=0$ ?
(1) circle
(2) sphere
(3) hyperbola
(4) ellipse
57. The equation of the plane which cuts the paraboloid $x^{2}-2 y^{2}=z$ in a conic with its centre at the point $\left(2, \frac{3}{2}, 4\right)$ is given by :
(1) $3 x+4 y+z=0$
(2) $2 x+4 y-z+7=0$
(3) $4 x-6 y-z+5=0$
(4) None of these
58. The latus rectum of the parabola $\left(a^{2}+b^{2}\right)\left(x^{2}+y^{2}\right)=(b x+a y-a b)^{2}$ is :
(1) $\frac{2 a b}{\sqrt{a^{2}+b^{2}}}$
(2) $a b \cdot \sqrt{a^{2}+b^{2}}$
(3) $\sqrt{a^{2}+b^{2}}$
(4) none of these
59. The equation of circle with radius ' $a$ ' and touching the initial line at pole is :
(1) $r=a \tan \theta$
(2) $r=2 a \sin \theta$
(3) $r=2 a \cot \theta$
(4) none of these
60. The points in which the line, $\frac{x+1}{-1}=\frac{y-12}{5}=\frac{z-7}{2}$ cuts the surface $11 x^{2}-5 y^{2}+z^{2}=0$ are :
(1) $(3,2,1),(2,0,1)$
(2) $(1,2,3),(2,-3,1)$
(3) $(2,1,1),(1,0,-1)$
(4) None of these
61. The resolved part of a force $f$ in a direction perpendicular to it is :
(1) Maximum
(2) Minimum
(3) F
(4) 0
62. Centre of gravity of a thin uniform triangular lamina divides every median in the ratio :
(1) $1: 2$
(2) $2: 1$
(3) $2: 3$
(4) $1: 4$
63. The force of friction called into play when there is equilibrium is called:
(1) Limiting friction
(2) Dynamical friction
(3) Statical friction
(4) None of these
64. Which type of forces from the couple ?
(1) Two equal and unlike parallel forces with same lines of action.
(2) Two equal and unlike parallel forces with different lines of action.
(3) Two unequal and like parallel forces with different lines of action.
(4) Two unequal and unlike parallel forces with different lines of action.
65. The gravitational unit of moment in S.I. system is :
(1) Dyne-centimeter
(2) Newton meter
(3) $\mathrm{gm} . \mathrm{cm}$
(4) $\mathrm{kg} \cdot \mathrm{m}$
66. Every non-empty subset of R which is bounded above must have l.u.b. This result is known as :
(1) Law of well ordering
(2) Law of trichotomy
(3) Completeness axiom
(4) Archimedian property of real numbers
67. The g.l.b. of a set :
(1) belongs to the set
(2) does not belong to the set
(3) may or may not belong to the set
(4) none of these
68. If $\sum_{n=1}^{\infty} a_{n}$ is convergent and the sequence $\left\langle b_{n}\right\rangle$ is monotonic and bounded, then $\sum_{n=1}^{\infty} a_{n} b_{n}$ is convergent. This statement is known as :
(1) Abel's test
(2) Abel's lemma
(3) Dirichlet's test
(4) None of these
69. The series $\sum_{n=1}^{\infty} a_{n}$, where $a_{n}=\sqrt{n^{4}+1}-\sqrt{n^{4}-1}$ is :
(1) convergent
(2) divergent
(3) oscillating
(4) none of these
70. The infinite product $\left(1-\frac{1}{2^{2}}\right)\left(1-\frac{1}{3^{2}}\right)\left(1-\frac{1}{4^{2}}\right) \ldots \ldots \ldots$ is :
(1) divergent
(2) convergent
(3) oscillating
(4) none of these
71. If $f$ is bounded function defined on $[a, b]$ and $P$ be a partition of $f[a, b]$, then which of the following is odd ?
(1) $L(f, P) \leq U(f, P)$
(2) $L(-f, P)=-U(f, P)$
(3) $U(P,-f)=-L(P, f)$
(4) $U(-f, P)=-U(f, P)$
72. Which of the following is not a bounded metric?
(1) $d(x, y)=|x-y|$
(2) $d(x, y)=\min \{2,|x-y|\}$
(3) discrete metric
(4) $\quad d^{*}(x, y)=\frac{d(x, y)}{1+d(x, y)}$
where $d$ is any metric on $X$.
73. Which one is a dense set ?
(1) the subset $A=\left\{\frac{1}{n}, n \in N\right\}$ in $R$,
(2) set of natural number in $R$
(3) $Q$ in $R$
(4) none of these

PG-EE-June, 2023/(Mathematics)(SET-X)/(D)

D
74. If $f(x)=\frac{1}{x^{2}}$ on $[1,4]$ and $P=[1,2,3,4]$ be the partition of $[1,4]$, then $L(f, P)$ is equal to :
(1) $\frac{70}{144}$
(2) $\frac{61}{144}$
(3) $\frac{30}{144}$
(4) none of these
75. The integral $\int_{-\infty}^{\infty} \frac{d x}{1+x^{2}}$ is :
(1) convergent
(2) divergent
(3) conditionally convergent
(4) none of these
76. A sphere (open or closed) is always :
(1) empty
(2) non-empty
(3) singleton set
(4) none of these
77. What is odd against the given statement "A set is closed iff" ?
(1) $A=\bar{A}$
(2) $d(A) \subset A$
(3) $A^{C}$ is open
(4) $A=\AA$
78. The order of $a$ and $x$ in a group are respectively 3 and 4. Then the order of $x^{-1} a x$ is :
(1) 12
(2) 8
(3) 5
(4) 3
79. Every group is isomorphic to a permutation group. This result is known as :
(1) Lagrange theorem
(2) Cauchy theorem
(3) Cayley's theorem
(4) Gauss theorem
80. The number of conjugacy classes in a group of order 25 is:
(1) 1
(2) 5
(3) 25
(4) none of these
81. The general solution of ordinary differential equation of ' $n$ ' order contains:
(1) n-arbitrary constants
(2) more than n-arbitrary constants
(3) any number of arbitrary constant
(4) none of these
82. General solution of $\frac{d y}{d x}+2 x y=2 e^{-x^{2}}$ is :
(1) $y=(2 x+c) e^{-x^{2}}$
(2) $y=2 x e^{-x}$
(3) $y=e^{-x}$
(4) none of these
83. The necessary condition for the equation $M(x, y) d x+N(x, y) d y=0$, to be exact is :
(1) $\frac{\partial N}{\partial y}=\frac{\partial M}{\partial x}$
(2) $\frac{\partial N}{\partial y}=-\frac{\partial M}{\partial x}$
(3) $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$
(4) $\frac{\partial M}{\partial y}=-\frac{\partial N}{\partial x}$
84. The equation $y d x+x d y=0$ is :
(1) Partial differential equation
(2) Exact differential equation
(3) Non-exact differential equation
(4) None of these

PG-EE-June, 2023/(Mathematics)(SET-X)/(D)
85. For the differential equation $x \frac{d y}{d x}-y=0$, which of the following function is not an integrating factor?
(1) $\frac{1}{x^{2}}$
(2) $\frac{1}{y^{2}}$
(3) $\frac{1}{x y}$
(4) $\frac{1}{x+y}$
86. If $\vec{a}$ and $\vec{b}$ are two vectors such that $\vec{a} \times \vec{b}=0$ and $\vec{a} \cdot \vec{b}=0$, then :
(1) $\vec{a}$ is parallel to $\vec{b}$
(2) $\vec{a}$ is at right angle to $\vec{b}$
(3) either $\vec{a}$ or $\vec{b}$ is a null vector
(4) none of these
87. The unit normal vector to the surface $x^{4}-3 x y z+z^{2}+1=0$ at the point $(1,1,1)$ is :
(1) $\frac{i+3 j+k}{\sqrt{\pi}}$
(2) $\frac{i-3 j-k}{\sqrt{\pi}}$
(3) $\frac{i+3 j-k}{\sqrt{\pi}}$
(4) None of these
88. A vector $\vec{f}$ is called an irrotational vector if :
(1) div curl $\vec{f}=0$
(2) $\nabla \cdot \vec{f}=0$
(3) $\nabla \times \vec{f}=0$
(4) none of these
89. Which of the following is not true?
(1) $\operatorname{curl}(\operatorname{grad} \phi)=0$
(2) $\operatorname{div}(\operatorname{grad} \phi)=0$
(3) $\operatorname{div}(\operatorname{curl} \vec{f})=0$
(4) $\operatorname{curl}(\vec{r})=0$
90. Which of the following is related with Stoke's theorem?
(1) A line integral and a volume integral
(2) A surface integral and a volume integral
(3) A line integral, a surface integral and a volume integral
(4) A line integral and a surface integral
91. Co-efficient of the vector $(5,-1,2)$ w.r. t. basis $(1,4,2),(4,2,1),(2,1,3)$ are :
(1) $(1,1,1)$
(2) $(-1,1,1)$
(3) $(1,2,3)$
(4) None of these
92. Which is an orthogonal set ?
(1) $\{(1,0,1),(1,0,-1),(0,1,0)\}$
(2) $\{(1,0,1),(1,0,-1),(0,3,4)\}$
(3) $\{(1,0,1),(1,0,-1),(-1,0,1)\}$
(4) None of these
93. Let $T: R^{2} \rightarrow R^{3}$ be linear transformation defined by $T\left(x_{1}, x_{2}\right)=\left(x_{1}-x_{2}, x_{2}-x_{1},-x_{1}\right)$. The nullty $T$ is :
(1) 2
(2) 1
(3) 0
(4) None of these
94. Let $F: R^{3} \rightarrow R^{2}$ be defined by $F(x, y, z)=(1 x, y+z)$, then :
(1) $F$ is linear transformation
(2) $F$ is not a linear transformation
(3) $F$ is invertible
(4) None of these

D
95. Let $V(F)$ be the vector space of all polynomial in $x$ in which an inner product is defined by $(f, g)=\int_{0}^{1} f(x) g(x) d x$. Then for $f(x)=x+2, g(x)=x^{2}-2 x-3,\langle f, g\rangle$ is equal to :
(1) $\frac{5}{2}$
(2) $\frac{5}{8}$
(3) $\frac{37}{4}$
(4) $-\frac{37}{4}$
96. The linear transformation $T: R^{2} \rightarrow R^{2}$ defined by $T(1,0)=(2,3), T(0,1)=(5,6)$ is :
(1) one one and onto
(2) one one but not onto
(3) onto but not one one
(4) none of these
97. Let $T: R^{3} \rightarrow R^{3}$ be defined by $T(x, y, z)=(x, y, 0)$ and $S: R^{2} \rightarrow R^{2}$ be defined by $S(x, y)=(2 x, 3 y)$, are linear transformation on the real vector spaces $R^{3}$ and $R^{2}$ respectively. Then which of the following is correct ?
(1) $T$ and $S$ are both singular
(2) $T$ and $S$ are both non-singular
(3) $T$ is singular but $S$ is non-singular
(4) None of these
98. The integral $\int_{0}^{1} x^{m-1}(1-x)^{n-1} d x$ is known as :
(1) Theta function
(2) Zeta function
(3) Gamma function
(4) Beta function
99. Fourier expansion of $f(x)=|x|$ in $[-\pi, \pi \mid$ is :
(1) $-\frac{4}{\pi}\left(\frac{\cos x}{1^{2}}+\frac{\cos 3 x}{3^{2}}+\frac{\cos 5 x}{5^{2}}+\ldots \ldots \ldots\right)$
(2) $\frac{\pi}{2}-\frac{4}{\pi}\left(\frac{\cos x}{1}+\frac{\cos 3 x}{3}+\frac{\cos 5 x}{5}+\ldots \ldots \ldots\right)$
(3) $\frac{\pi}{2}-\frac{4}{\pi}\left(\frac{\cos x}{1^{2}}+\frac{\cos 3 x}{3^{2}}+\frac{\cos 5 x}{5^{2}}+\ldots \ldots \ldots\right)$
(4) None of these
100. If the function $f(z)$ is continuous at $z_{0}$, then :
(1) $f(z)$ is differentiable at $z_{0}$
(2) $f(z)$ is not necessarily differentiable at $z_{0}$
(3) $f(z)$ is analytic at $z_{0}$
(4) None of these

| ANSWER KEYS OF COMMON ENTERANCE FOR M.S.C. (MATHS) \& (Maths with CS) FOR SESSION 2023-24 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Q. NO. | A | B | C | D |
| 1 | 1 | 3 | 4 | 4 |
| 2 | 1 | 1 | 2 | 1 |
| 3 | 3 | 1 | 3 | 2 |
| 4 | 2 | 4 | 2 | 2 |
| 5 | 4 | 2 | 4 | 3 |
| 6 | 3 | 3 | 3 | 4 |
| 7 | 2 | 1 | 3 | 1 |
| 8 | 3 | 3 | 1 | 2 |
| 9 | 2 | 2 | 1 | 3 |
| 10 | 4 | 4 | 2 | 4 |
| 11 | 4 | 1 | 4 | 1 |
| 12 | 1 | 1 | 2 | 2 |
| 13 | 2 | 2 | 3 | 3 |
| 14 | 2 | 3 | 1 | 4 |
| 15 | 3 | 4 | 1 | 4 |
| 16 | 4 | 3 | 2 | 3 |
| 17 | 1 | 2 | 3 | 4 |
| 18 | 2 | 1 | 1 | 1 |
| 19 | 3 | 3 | 2 | 2 |
| 20 | 4 | 4 | 2 | 2 |
| 21 | 4 | 4 | 1 | 3 |
| 22 | 2 | 3 | 1 | 1 |
| 23 | 3 | 1 | 3 | 1 |
| 24 | 1 | 2 | 2 | 4 |
| 25 | 1 | 1 | 4 | 2 |
| 26 | 2 | 2 | 3 | 3 |
| 27 | 3 | 3 | 2 | 1 |
| 28 | 1 | 1 | 3 | 3 |
| 29 | 2 | 4 | 2 | 2 |
| 30 | 2 | 4 | 4 | 4 |
| 31 | 4 | 4 | 1 | 1 |
| 32 | 3 | 1 | 2 | 1 |
| 33 | 1 | 2 | 3 | 2 |
| 34 | 2 | 2 | 4 | 3 |
| 35 | 1 | 3 | 4 | 4 |
| 36 | 2 | 4 | 3 | 3 |
| 37 | 3 | 1 | 4 | 2 |
| 38 | 1 | 2 | 1 | 1 |
| 39 | 4 | 3 | 2 | 3 |
| 40 | 4 | 4 | 2 | 4 |
| 41 | 4 | 1 | 4 | 4 |
| 42 | 2 | 2 | 1 | 3 |
| 43 | 3 | 3 | 3 | 1 |
| 44 | 2 | 4 | 2 | 2 |
| 45 | 4 | 4 | 1 | 1 |
| 46 | 3 | 3 | 2 | 2 |
| 47 | 3 | 4 | 4 | 3 |
| 48 | 1 | 1 | 4 | 1 |
| 49 | 1 | 2 | 3 | 4 |
| 50 | 1) 2 | 2 | 1 | 4 |



